

DRAFT

ENVIRONMENTAL IMPACT REPORT

E-77-9

STANDARD PACIFIC-VENTURA

Z-601
T-2854

Prepared by:

City of Oxnard
Planning Department
305 West Third Street
Oxnard, California 93030

October 5, 1977

DRAFT

ENVIRONMENTAL IMPACT REPORT

E-77-9

STANDARD PACIFIC-VENTURA

Z-601
T-2854

Access to 40 units
Damage? SW 39
NE to P 39
Red area
police 100ft open
on 3 sides

1. Introduction	1
2. General Description of the Area	2
3. Environmental Quality	3
4. Natural Resources	4
5. Population	5
6. Economic	6
7. Environmental Problems	7
8. Environmental Planning	8
9. Environmental Impact	9
10. Alternatives	10
11. Conclusion	11
12. Environmental Setting and Impact	12
13. Alternatives	13
14. Conclusion	14
15. References	15
16. Bibliography	16
17. Appendices	17
18. Glossary	18
19. Index	19

Prepared by:

City of Oxnard
Planning Department
305 West Third Street
Oxnard, California 93030

October 5, 1977

TABLE OF CONTENTS

	<u>PAGE</u>
Title Page	i
Table of Contents	ii
List of Figures	iv
List of Tables	v
I. PURPOSE OF THE REPORT	1
II. PROJECT DESCRIPTION	2
A. Project Applicant	2
B. Project Location	2
C. General Description	2
D. Project Objectives	3
III. ENVIRONMENTAL SETTING, IMPACT & MITIGATION	7
A. Human Environment	7
1. Land Use	7
a. Environmental Setting	7
General and Specific Plans	7
b. Environmental Impact	12
The Neighborhood Park Issue	14
c. Mitigation	15
2. Transportation	16
a. Environmental Setting	16
b. Environmental Impact	21
c. Mitigation	23
3. Police Services	24
a. Environmental Setting and Impact	24
b. Mitigation	25
4. Fire Services	25
a. Environmental Setting and Impact	25
b. Mitigation	25
5. School Systems	26
a. Environmental Setting	26
b. Environmental Impact	28
c. Mitigation	28

6.	Sewer System	29
a.	Environmental Setting	29
b.	Environmental Impact	32
c.	Mitigation	33
7.	Water Quality	35
a.	Environmental Setting	35
b.	Environmental Impact	35
c.	Mitigation	36
B.	Natural Environment	37
1.	Noise	37
a.	Environmental Setting	37
b.	Environmental Impact	38
c.	Mitigation	38
2.	Flood Control/Drainage	39
a.	Environmental Setting	39
b.	Environmental Impact	39
c.	Mitigation	40
3.	Seismicity	43
a.	Environmental Setting	43
b.	Environmental Impact	48
	Ground Shaking	48
	Liquefaction	48
c.	Mitigation	48
4.	Soils	49
a.	Environmental Setting	49
b.	Environmental Effects	49
c.	Mitigation	50
IV.	ALTERNATIVES TO THE PROJECT	51
1.	No Project	51
2.	Modified Project (No Land Exchange)	51
3.	Other Urban Land Uses	52
a.	High/Lower Density Residential	52
b.	Public Use	52
V	PERSONS, ORGANIZATIONS, AND REFERENCES CONSULTED	54

TABLE OF CONTENTS

(Continued)

		<u>PAGE</u>
APPENDICES		
I	INITIAL STUDY	
II	PRELIMINARY SOIL INVESTIGATION	
III	NOISE ASSESSMENT WORKSHEET	
IV	CORRESPONDENCE	
V	SEWER MORATORIUM ORDINANCE	
LIST OF FIGURES		
<u>FIGURE</u>		
1	LOCATION MAP	4
2	SITE PLAN	5
3	PERSPECTIVE SKETCHES	6
4	EXISTING LAND USE	8
5	PROJECT VICINITY	9
6	LAND USE PLAN	10
7	SPECIFIC PLAN	11
8	FUNDAMENTAL CAPACITY CHART	18
9	TRAFFIC MEASUREMENTS	19
10	EXISTING TRAFFIC FLOWS	20
11	PUBLIC FACILITIES	27
12	SEWER MORITORIUM AREAS	31
13	FLOOD CONTROL PROBLEM AREA	41
14	DRAINAGE PATTERN	42
15	ELEMENTS OF GEOLOGIC STRUCTURE	44
16	POTENTIAL AMPLIFICATION OF GROUND SHAKING	46
17	LIQUEFACTION	47
18	PROPOSED ALTERNATIVE IMPACTS MATRIX	53

LIST OF TABLES

<u>TABLE</u>		<u>PAGE</u>
1	NEIGHBORHOOD CENTRAL-4 LAND USES	12
2	PARK STANDARDS AND ACREAGES	15
3	ESTIMATED DISTRIBUTION OF GENERATED TRAFFIC	21
4	TRAFFIC VOLUMES AND CAPACITIES	22
5	SCHOOL CAPACITIES	28
6	INPUTS INTO THE OXNARD WASTEWATER SYSTEM BY 1980	34
7	MAJOR FAULTS AND SEISMIC PARAMETERS	45

I. PURPOSE OF THE REPORT

This Environmental Impact Report has been prepared in accordance with the State Secretary of Resources' guidelines for implementing the California Environmental Quality Act of 1970 (CEQA), as amended through January of 1977, and in accordance with Ordinance 1470 and Resolution 6179 of the City of Oxnard.

The EIR is an informational document only and any conclusions which it draws are not intended as advocating either approval or denial of the project proposal. This EIR is focused upon areas of potential effects upon the environment, as identified by an initial study (reference Appendix A).

II. PROJECT DESCRIPTION

A. Project Applicant

Standard Pacific-Ventura
32123 Lindero Canyon Road, Suite 212
Westlake Village, California 91361

B. Project Location

The project occupies a 7.8 acre site in Neighborhood No. 4 of the Central community. It lies east of Edelwiess Street and south of the Orchard Lane condominium development. The general location is shown on Figure-1.

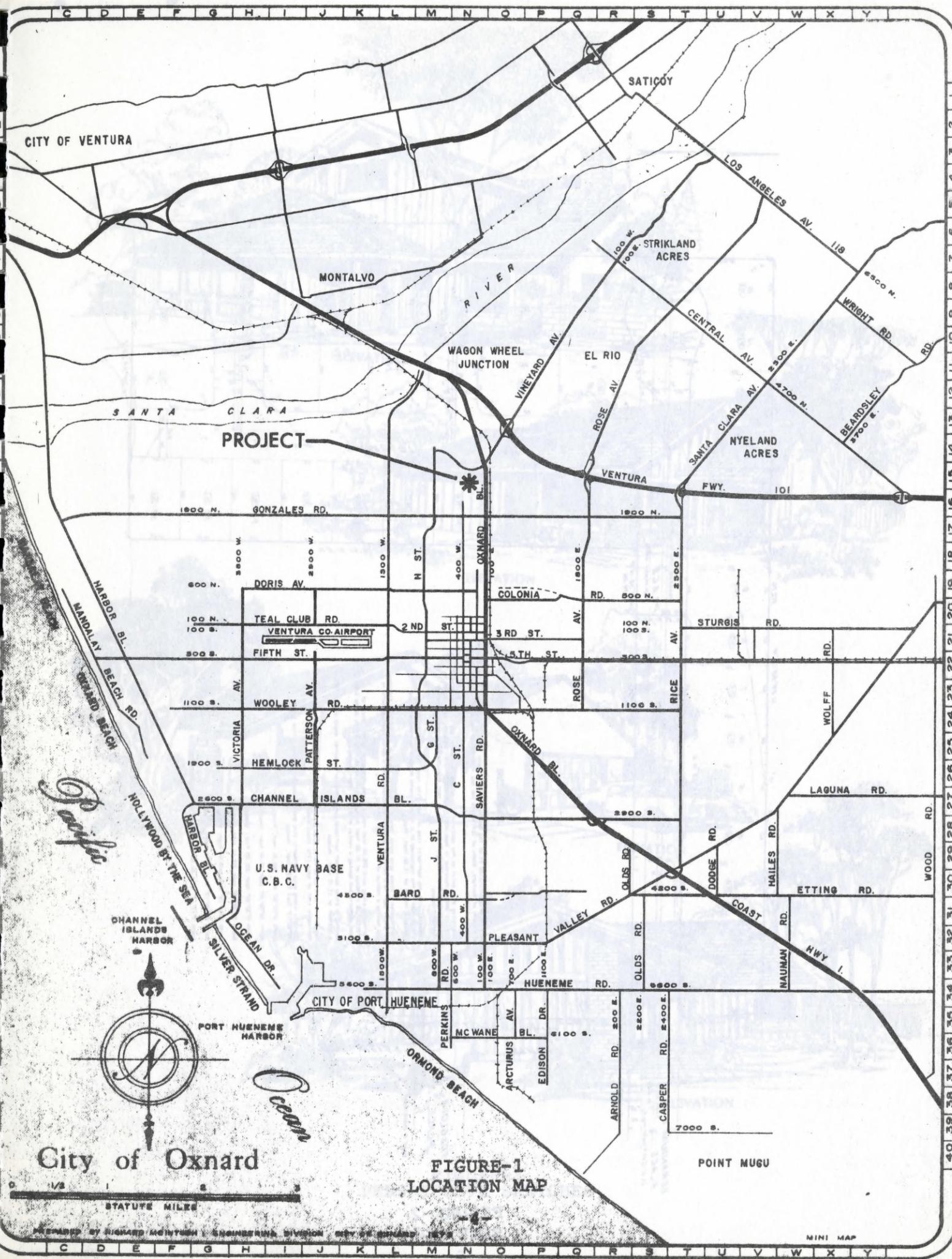
C. General Description

The project proposes the development of 41 single family lots on the 7.8 acres. This requires City approval of a zone change from C-R (Community Reserve) to R-1 and a subdivision map. The subdivision pattern is shown in Figure-2.

Approximately 28% of the land will be dedicated as streets while the remainder is divided into lots of approximately 6000 square feet. The structures are proposed to be wood frame stucco houses between 1300 and 1800 square feet. The developer states that the houses will be offered for between \$45,000 and \$60,000 (July 1977 dollars). Perspective sketches of typical units are displayed in Figure-3.

Assuming that the occupancy of dwelling units provided by the project is similar to other single family houses in Oxnard, there will be a project population of 154.

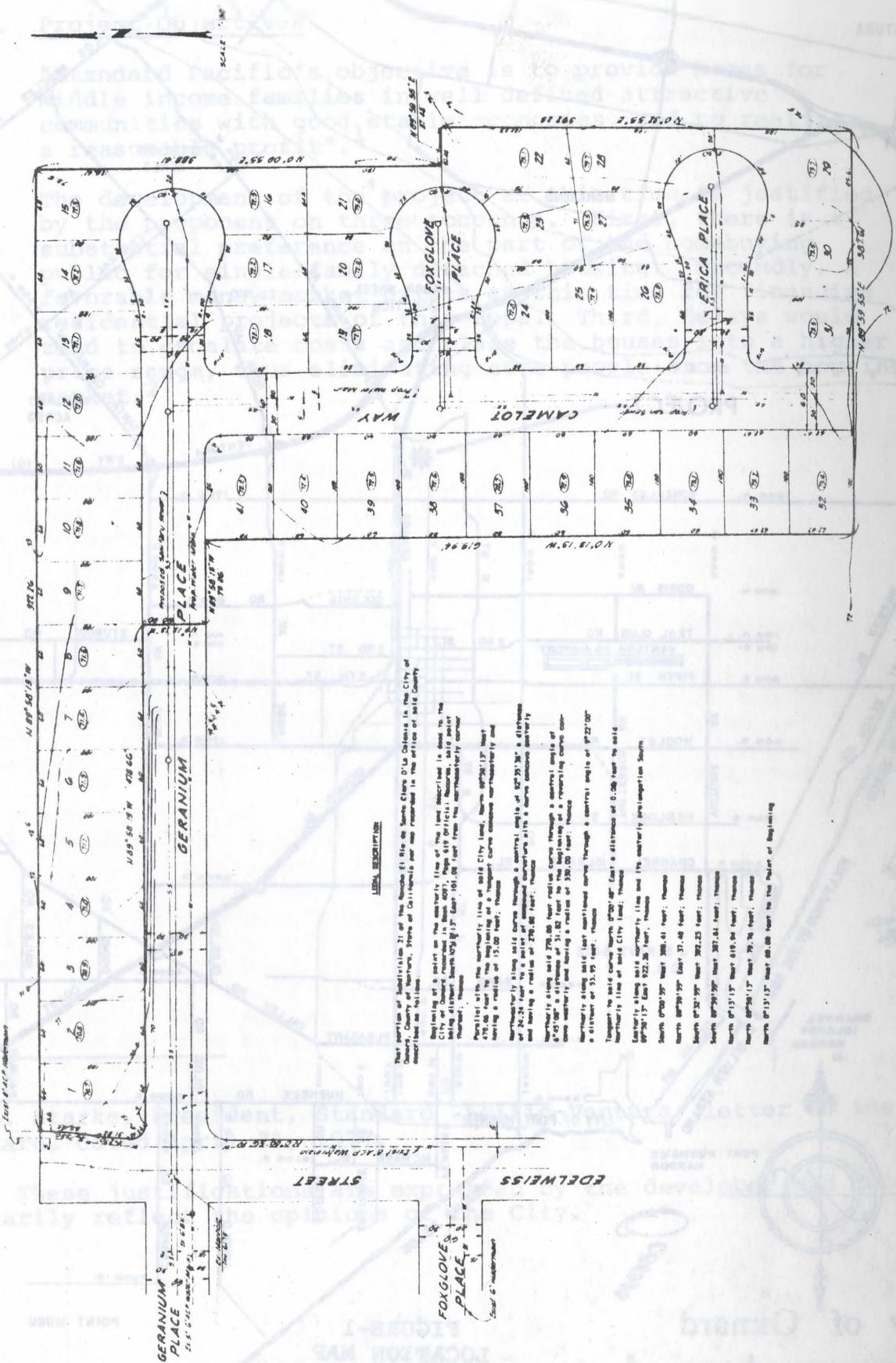
Lots 1 through 8, as shown on the proposed Tentative Tract Map, are presently owned by the City and were originally intended for park purposes. This land will be obtained by the developer in return for title to an 80 foot strip on the east side of a planned park at the rear of lots 32 through 41, and the developer's abandonment of an access easement which he now holds through the proposed park, approximately on the Erica Place alignment. This land exchange is anticipated by the project proponent and is integral to both the project and planned park configuration.


D. Project Objectives

"Standard Pacific's objective is to provide homes for middle income families in well defined attractive communities with good, stable economies, and to realize a reasonable profit".¹

The development of the project at this time is justified by the proponent on three accounts. First, there is a substantial preference on the part of the homebuying public for single-family detached housing. Secondly, a favorable money market exists at this time for financing residential projects of this type. Third, delays would tend to escalate costs and place the houses into a higher price range, thus eliminating some people from the housing market.²

¹Paul Starke, President, Standard Pacific-Ventura, letter to the City of Oxnard, dated April 21, 1977.


²Ibid. These justifications are expressed by the developer and do not necessarily reflect the opinions of the City.

**FIGURE-1
LOCATION MAP**

City of Oxnard

STATUTE MILE

FIGURE-2
SITE PLAN

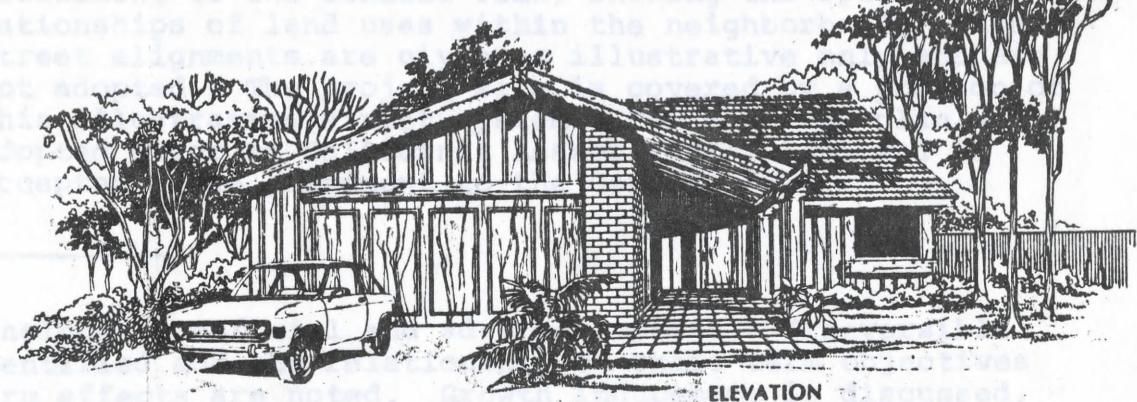
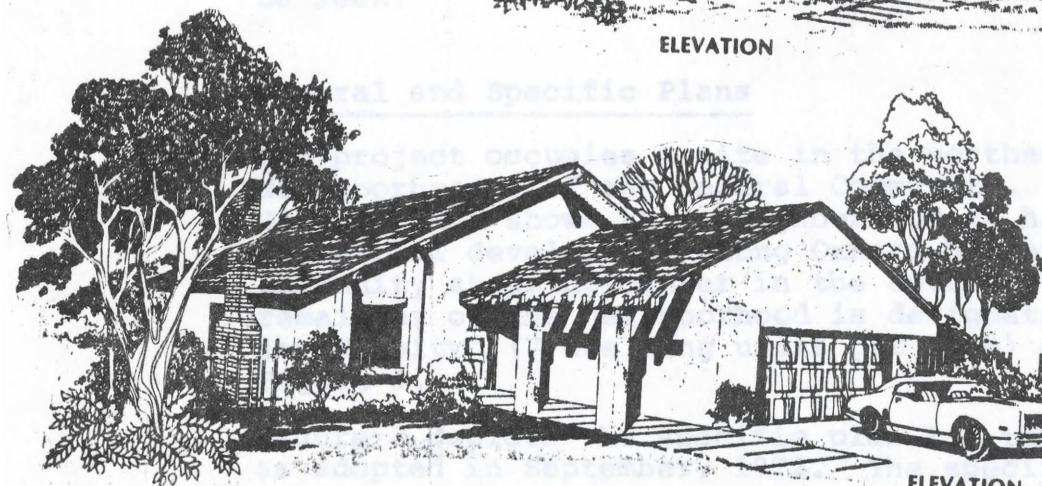
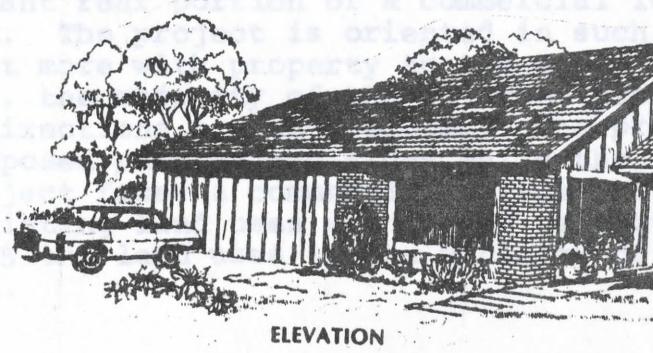




FIGURE-3
PERSPECTIVE SKETCHES

LEEDS
ARCHITECTURE
DESIGN
INTERIOR DESIGN
INTERIOR
DESIGN

III. ENVIRONMENTAL SETTING, IMPACT AND MITIGATION¹

A. Human Environment

1. Land Use

a. Environmental Setting

The project is bounded by a variety of land uses. On the north lies the Orchard Lane condominium development, a clustered, low-rise residential area with a relatively open character. On the east, a small trailer park and the vacant rear portion of a commercial lot abuts the project. The project is oriented in such a manner to interact more with property to the south and west. At present, the majority of the adjacent properties in these directions are undeveloped. The project surrounds the proposed park on two sides while the south side of the project faces a commercial citrus grove. Figure-4 maps existing land uses within the neighborhood. With Figure-5 the land uses in the vicinity of the project can be seen.

General and Specific Plans

The project occupies a site in the northeast portion of Neighborhood 4 of the Central Community. The Oxnard General Plan shows this neighborhood as having Highway Commercial development along Oxnard Boulevard and a community shopping center in the southeast corner. The remainder of the neighborhood is designated as "upper low density" (7 dwelling units per acre) as shown on Figure-6.

Figure-7 depicts the specific plan for the neighborhood, as adopted in September, 1972. The specific plan is a refinement of the General Plan, showing the spatial relationships of land uses within the neighborhood. Dashed street alignments are given as illustrative only and are not adopted. The project site is covered by a portion of this illustrative street system. The specific plan was adopted prior to California Assembly Bill 1301 and is accepted as an amendment to the General Plan.

¹This section includes beneficial and adverse impacts. Irreversible impacts are identified and the relationship of short term objectives versus long term effects are noted. Growth inducement is discussed, when significant.

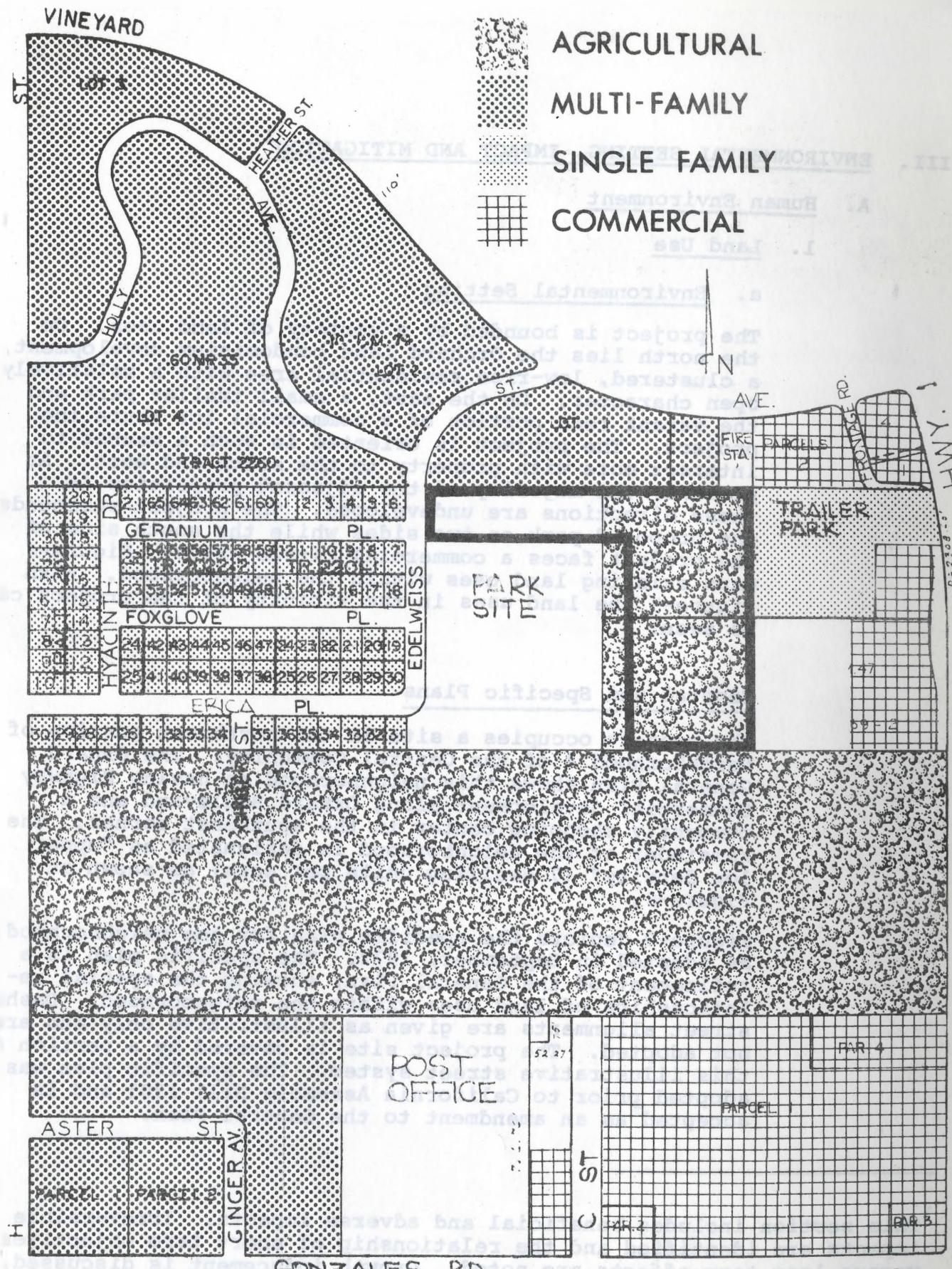


FIGURE-4
EXISTING LAND USE

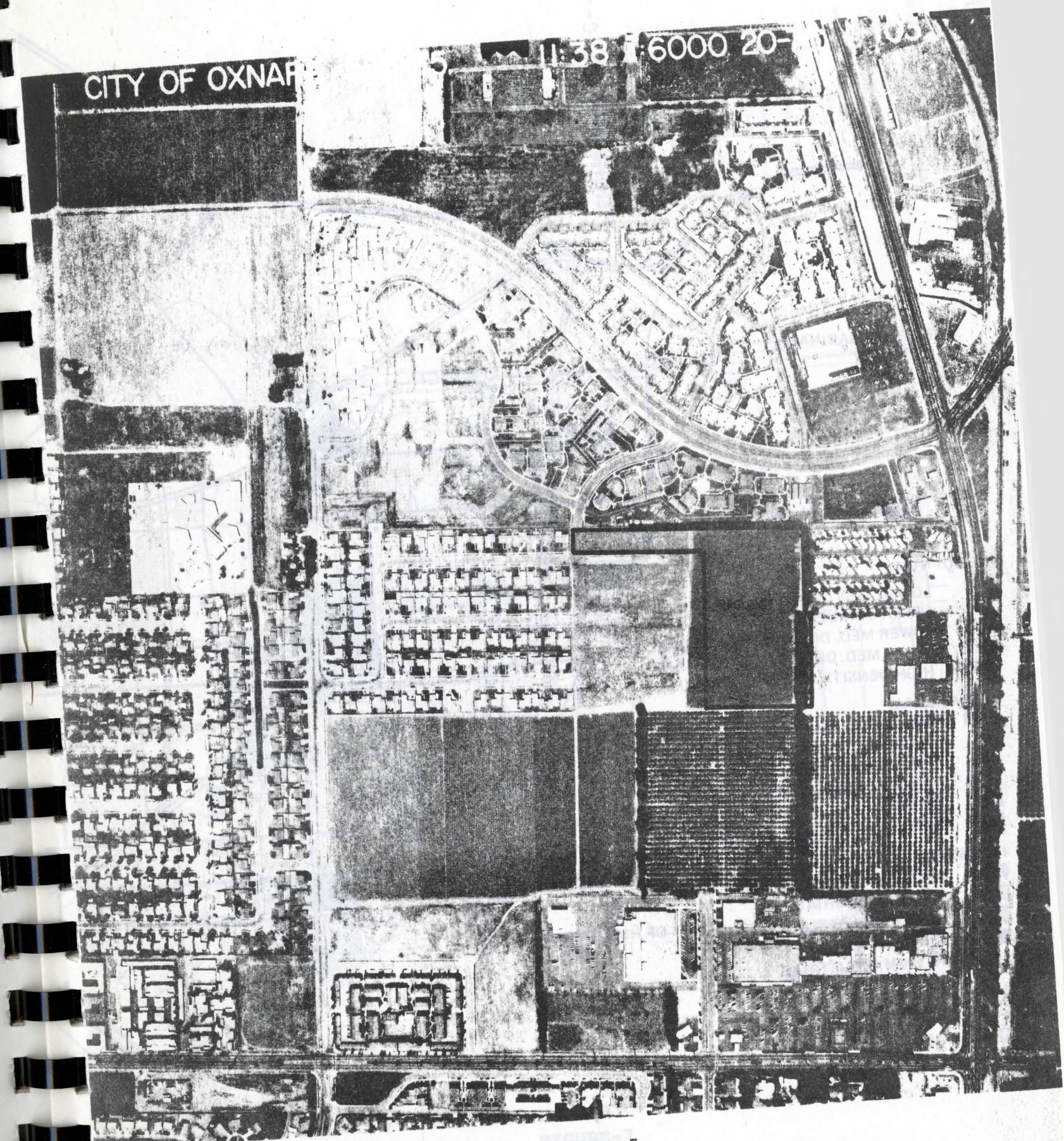


FIGURE-5
PROJECT VICINITY

VENTURA MARINA

LAND USE PLAN

RESIDENTIAL

●●●	LOWER LOW DENSITY	2.5 D.U./AC.
●●●●	UPPER LOW DENSITY	7 D.U./AC.
●●●●●	LOWER MED. DENSITY	13 D.U./AC.
●●●●●●	UPPER MED. DENSITY	20 D.U./AC.
●●●●●●●	HIGH DENSITY	42 D.U./AC.

COMMERCIAL

■■■	CENTRAL BUSINESS DISTRICT
●●●●	REGIONAL SHOPPING CENTER
●●●●●	COMMUNITY COMMERCIAL
●●●●●●	HIGHWAY COMMERCIAL
●●●●●●●	SPECIAL
●●●●●●●●	AIRPORT RELATED

INDUSTRIAL

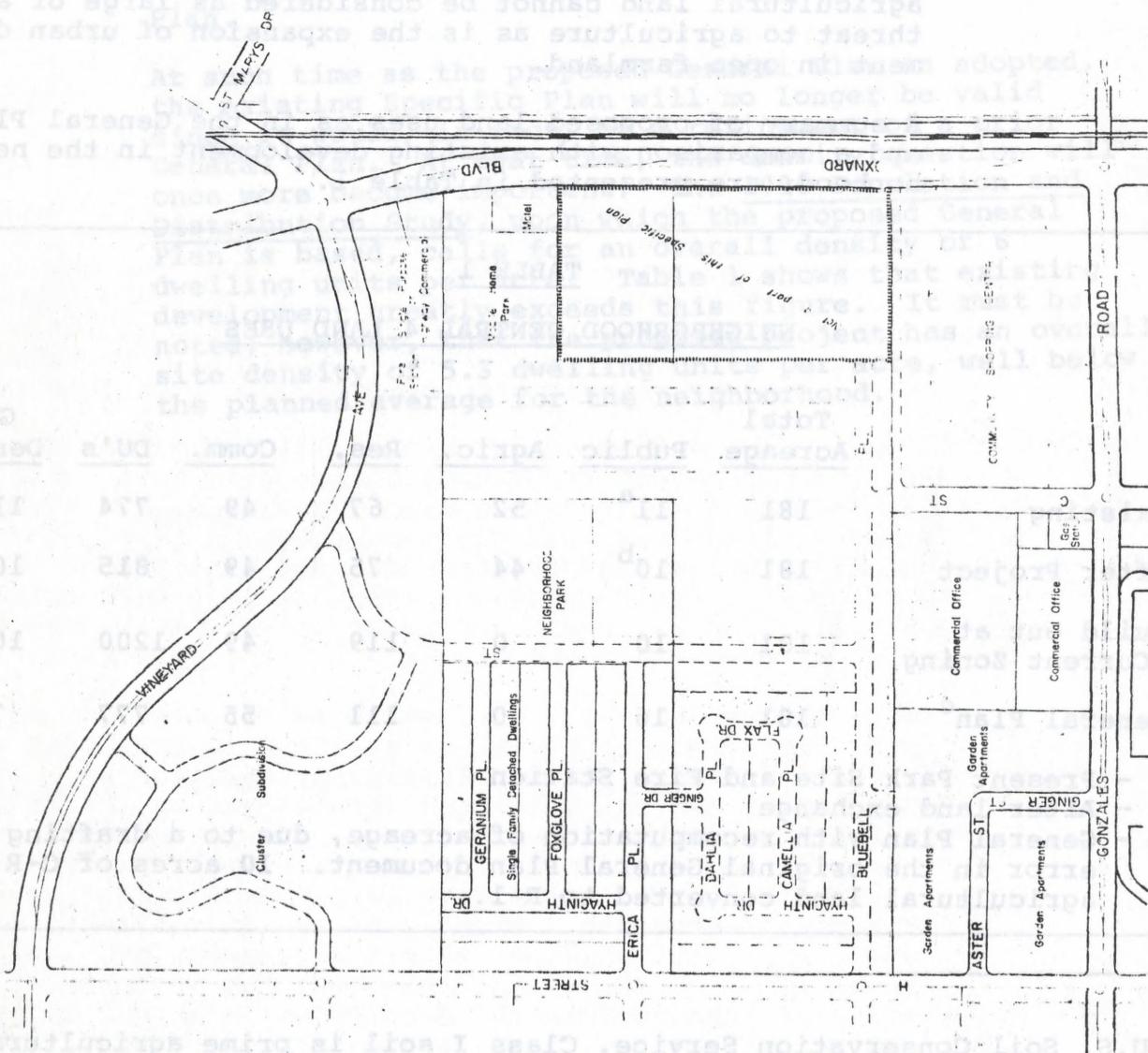
■■■■	LIMITED INDUSTRIAL
■■■■■	LIGHT INDUSTRIAL
■■■■■■	HEAVY INDUSTRIAL
■■■■■■■	PUBLIC UTILITY
●	INTERIM INDUSTRIAL

PUBLIC-SEMI PUBLIC

■■■■■■	PUBLIC
--------	--------

■■■■■■■	PARKS & OPEN SPACE
---------	--------------------

■■■■■■■■	MILITARY
----------	----------


CHANNEL ISLANDS HARBOR

PORT OF HUENEME

PROJECT

FIGURE-6

SPECIFIC PLAN NO. 5

NEIGHBORHOOD C-4

LEGEND

- CAPITAL LETTERS: RESIDENTIAL COMMERCIAL
- Lower case letters: RESIDENTIAL COMMERCIAL
- ARTERIALS: PRIMARY, SECONDARY
- COLLECTOR STREETS
- SIZING: MAJOR STREETS
- PROPOSED: MAJOR STREETS
- ACCESS TO NEIGHBORHOODS
- APPROVED DRIVEWAYS
- TOTAL ACRES: 7 DWELLINGS, 1/4 ACRE PER RESIDENTIAL ACRE
- PROJECTED POPULATION: 245 PROJECTED ELEMENTARY PUPILS, 122 PROJECTED JUNIOR HIGH PUPILS, 65 PROJECTED SENIOR HIGH PUPILS

APPROVED BY CITY PLANNING COMMISSION

PER A.C. 14-72

APR 1972 BY CITY PLANNING

PER A.C. 14-72

APR 1972 BY CITY PLANNING

FIGURE-7
SPECIFIC PLAN
-11-

b. Environmental Impact

The project will irreversibly remove 7.8 acres of class I agricultural land from production. Only 4.4% of Ventura County contains class I soils.¹ The average county-wide yield of field crops was 13.81 tons per acre with an average gross crop value of \$224.47 per ton.² The project site would have an average yield of 108 tons and a mean annual gross agricultural income of \$24,180, however, the long term agricultural use of the site may not be economically viable. The loss of agricultural acreage cannot be mitigated. However, the infilling of areas with residual agricultural land cannot be considered as large of a threat to agriculture as is the expansion of urban development in open farmland.

A summary of proposed land uses as in the General Plan and a comparison with existing development in the neighborhood, are presented in Table 1.

TABLE 1

NEIGHBORHOOD CENTRAL 4 LAND USES

	Total Acreage	Public	Agric.	Res.	Comm.	DU's	Gross Density
Existing	181	11 ^a	52	67	49	774	11.6
After Project	181	10 ^b	44	75	49	815	10.9
Build out at Current Zoning	181	10	0	119	49	1200	10.1
General Plan ^c	181	16	0	111	55	777	7.0

a - Present Park Site and Fire Station

b - After land exchange

c - General Plan with recomputation of acreage, due to a drafting error in the original General Plan document. 10 acres of C-R agricultural land converted to R-1.

¹U.S. Soil Conservation Service, Class I soil is prime agricultural soil with few limitations on agricultural use.

²Ventura County Agricultural Crop Report 1975. The yield on Class I soil is probably somewhat higher.

The project is not in conformity with the adopted Specific Plan for neighborhood Central 4, in regard to the park site. The Specific Plan does not reflect the land exchange which is integral to the proposed project. The land use for the majority of the site is shown on the Specific Plan as low density, single family dwelling units, to which the project is consistent. Since the Specific Plan amended the General Plan, any inconsistency must be found in the Specific Plan. Therefore, the higher than planned densities, shown on Table 1 are of academic interest only, the density question is superceded by the adopted Specific Plan.

At such time as the proposed General Plan is adopted, the existing Specific Plan will no longer be valid since it would, in fact, be a refinement of a prior General Plan. At that time, the density question will once more become important. The 1990 Population and Distribution Study, upon which the proposed General Plan is based, calls for an overall density of 6 dwelling units per acre. Table 1 shows that existing development greatly exceeds this figure. It must be noted, however, that the proposed project has an overall site density of 5.3 dwelling units per acre, well below the planned average for the neighborhood.

The Neighborhood Park Issue

A local standard of 2.5 acres of neighborhood park per 1000 population has been set.¹ Using a current population of 92,000, this indicates a need for 230 acres of neighborhood parks in Oxnard.

The Oxnard General Plan and the Parks and Recreation Element allocates 6 acres of the neighborhood for park purposes; however, the City has acquired a parcel of approximately 9 acres for which an approved park design exists.

The General Plan also allocates a 10 acre school site to the neighborhood. Although it is not specifically sited on the adopted Specific Plan, draft versions show a school site south of the park. The omission may have been the result of a drafting error on the adopted plan.

The fact that a significant part of the neighborhood is marked "Not a Part" on the Specific Plan, the omission of the school site from the adopted plan, and the fact that the City has never reserved a school site on behalf of the Rio School District, makes the examination of planned uses difficult. Enough irregularities exist in the record to prevent precise conclusions in this regard.

The 8.953 acres owned by the City of Oxnard and held for park purposes (including access easement), will be reduced to 8.184 acres under the proposed land exchange. The existing park configuration which is bisected by an access easement, is considered to be less usable than the proposed configuration. The net loss 0.77 acres of City land is considered to be outweighed by the overall improvement to the usability of the park site.

With the removal of the easement across the park and with the street improvements provided on the north side, the development of the park site is facilitated. Its completion and the continued development of the interior of the neighborhood, which the project represents, increases the likelihood of the development of the remaining agricultural land. This is due to the fact that the park represents a significant residential amenity and the project provides street alignments and infrastructural links to the south. Also, it has been reported in the past that residential development adjacent to producing agricultural land, causes increased vandalism and crop loss due to theft. The combination of these impacts has a minor growth inducing effecting, in encouraging the conversion of crop land.

¹Oxnard 2000: General Plan, Parks and Recreation Element, pg. II-112.

Table 2 shows the relationship of the General Plan neighborhood park standards to existing land in Oxnard. Since it shows that the City has achieved only 66% of its own standard, the loss of 0.77 acres of park land is a greater impact.

TABLE 2
PARK STANDARDS AND ACREAGES

	<u>Neighborhood Parks (In Acres)</u>	<u>Other Parks¹ (In Acres)</u>
Standard	230	690
Existing Developed or Developing ²	110	21 ³
Existing Undeveloped ²	41 ⁵	274 ⁴
Total Existing Parks as a Percentage of the Standard	66%	43%

c. Mitigation

The inconsistencies of adopted general and specific plans and existing development, in regard to density and a school site can be rectified by a thorough neighborhood analysis and appropriate revisions. Should this be attempted prior to the approval of this project, a further range of options will be available to the City.

¹Includes 2.5 acres/1000 population for Regional Parks and beaches. Also includes 5 acres/1000 population for City and Community parks as defined in the Parks and Recreation Element, pg. II-111.

²Ray Thurston, Oxnard Parks Department, May 20, 1977.

³Community Center Park.

⁴Includes 144 acre golf course, 50 acre Petit Park site and 80 acre Beach Park.

⁵Includes project related park.

2. Transportation

a. Environmental Setting

The project is located within one mile of the Vineyard Avenue interchange with U.S. 101, and approximately 300 feet west of State Highway 1. The project site, however, does not have frontage on either Vineyard Avenue or State Highway 1, but will have easy access to the Vineyard Avenue arterial by way of Edelweiss Street. This will form a primary off-site access point for project residents. The second primary access point is on "H" Street by way of Erica Place. A minor route would be the Holly Avenue - Heather Street system within the condominium project to the north. The utility of this latter route is discounted due to the excessive travel times involved relative to the primary routes.

Traffic capacities were computed for locations along the two primary access paths of Erica/"H" Street and Edelweiss/Vineyard Avenue. In general, the determination of critical capacities for secondary and arterial streets is measured at the approaches to major intersections. The limiting factor here is the presence of turning movements and the amount of greentime in the signalization of the critical intersections.

Capacities for the intersection approaches are determined for the following formula:¹

$$C = C_f \times A_{loc} \times A_g \times A_{tm} \times A_t, \text{ where,}$$

C = Adjusted 2-way capacity

C_f = Fundamental capacity determined graphically

A_{loc} = Locational adjustment factor

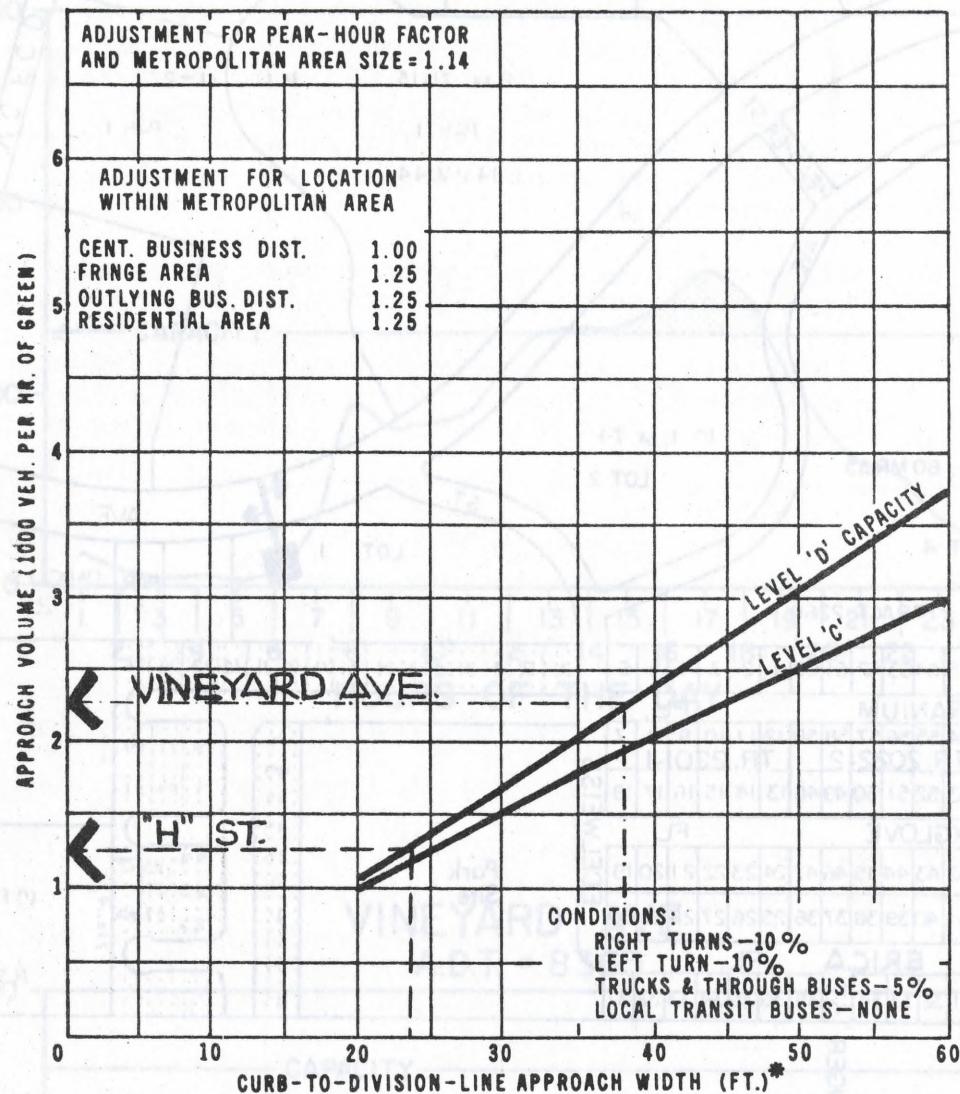
A_g = Percentage of 2-way greentime for each signal

A_{tm} = Turning movement adjustment factor

A_t = Truck and bus adjustment factor

¹City of Los Angeles, EIR Manual, Appendix T-A, 1975

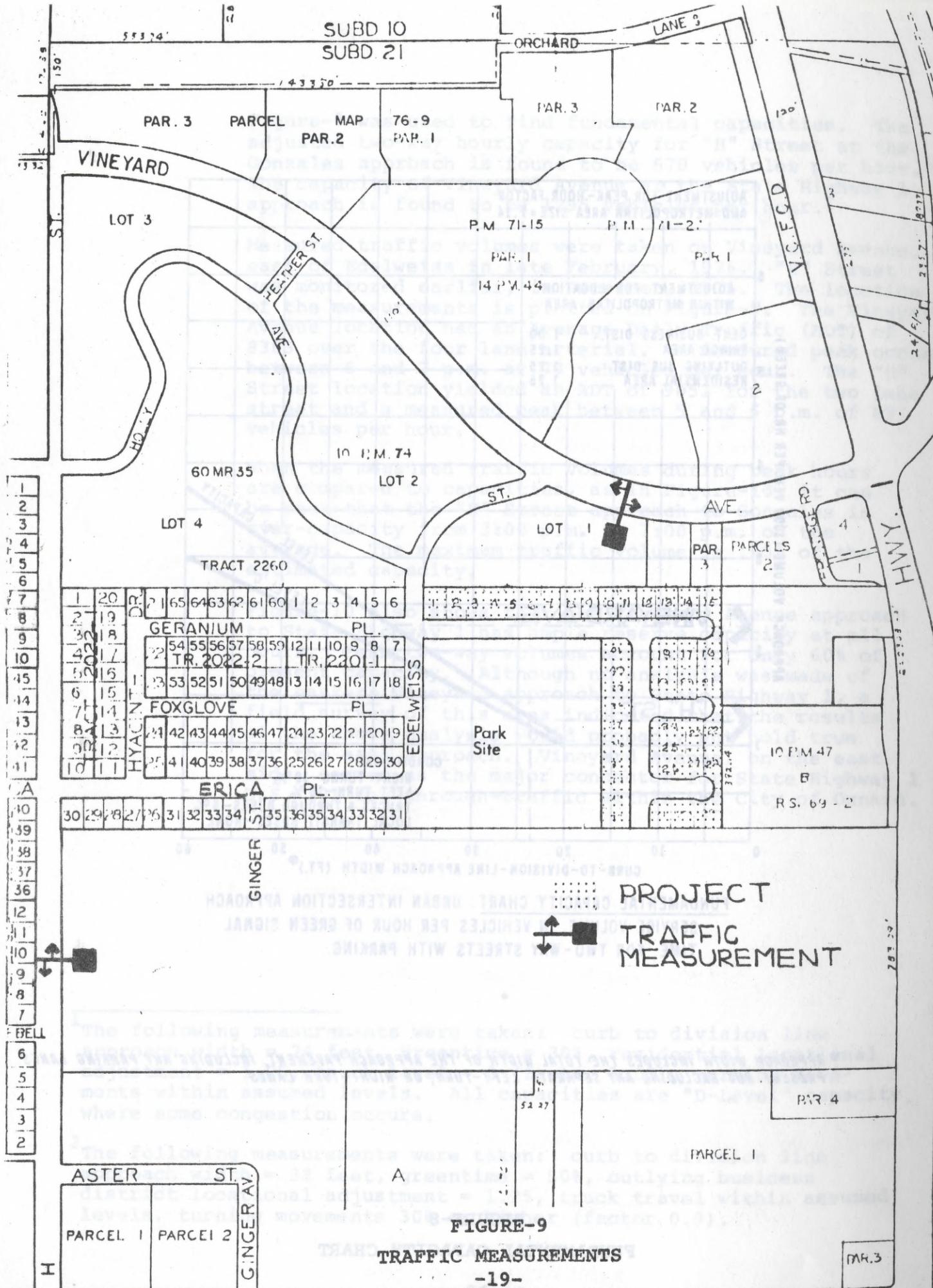
Figure-8 was used to find fundamental capacities. The adjusted two-way hourly capacity for "H" Street at the Gonzales approach is found to be 670 vehicles per hour.¹ The capacity of Vineyard Avenue at the State Highway 1 approach is found to be 1295 vehicles per hour.²


Measured traffic volumes were taken on Vineyard Avenue, east of Edelweiss in late February, 1976. "H" Street was monitored earlier, in December, 1975. The location of the measurements is plotted on Figure-9. The Vineyard Avenue location had an Average Daily Traffic (ADT) of 8363 over the four lane arterial. A measured peak occurred between 6 and 7 p.m. at 79 vehicles per hour. The "H" Street location yielded an ADT of 9052 for the two lane street and a measured peak between 5 and 6 p.m. of 837 vehicles per hour.

When the measured traffic volumes during peak hours are compared to capacities, as in Figure-10, it can be seen that the "H" Street approach to Gonzales is over-capacity from 3:00 p.m. to 7:00 p.m. on the average. The maximum traffic volume is 125% of the estimated capacity.

Figure-10 also shows that the Vineyard Avenue approach to State Highway 1 has ample reserve capacity at all hours. Peak two-way volumes account for only 60% of present capacity. Although no analysis was made of the eastern Vineyard approach to State Highway 1, a field survey of this area indicated that the results of the above analysis would probably not hold true for the east approach. Vineyard Avenue, on the east side, serves as the major connector for State Highway 1 - U.S. 101 for through-traffic within the City of Oxnard.

¹The following measurements were taken: curb to division line approach width = 24 feet, green time = 30%, residential locational adjustment = 1.25, truck level = 0 (factor 1.05), turning movements within assumed levels. All capacities are "D-Level" capacity where some congestion occurs.


²The following measurements were taken: curb to division line approach width = 38 feet, green time = 50%, outlying business district locational adjustment = 1.25, truck travel within assumed levels, turning movements 30% or higher (factor 0.9).

FUNDAMENTAL CAPACITY CHART: URBAN INTERSECTION APPROACH
SERVICE VOLUME, IN VEHICLES PER HOUR OF GREEN SIGNAL
TIME, FOR TWO-WAY STREETS WITH PARKING.

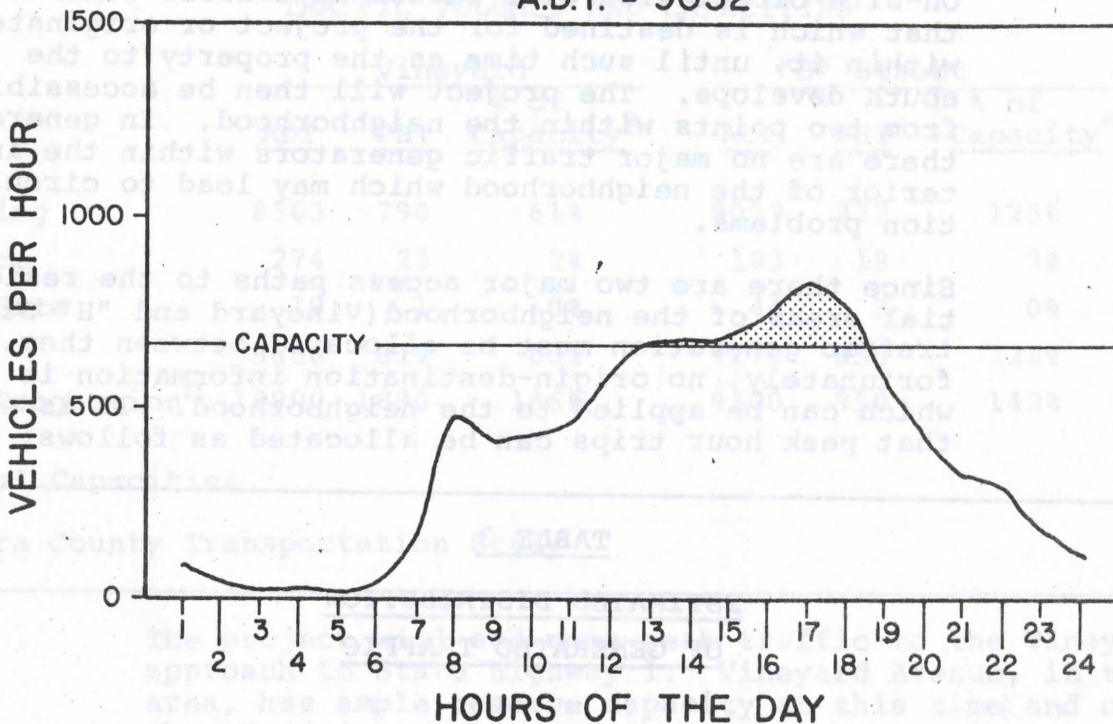

* APPROACH WIDTH INCLUDES THE TOTAL WIDTH OF THE APPROACH PAVEMENT, INCLUDING ANY PARKING LANES
PRESENT BUT EXCLUDING ANY SEPARATE LEFT-TURN, OR RIGHT-TURN LANES.

FIGURE-8
FUNDAMENTAL CAPACITY CHART

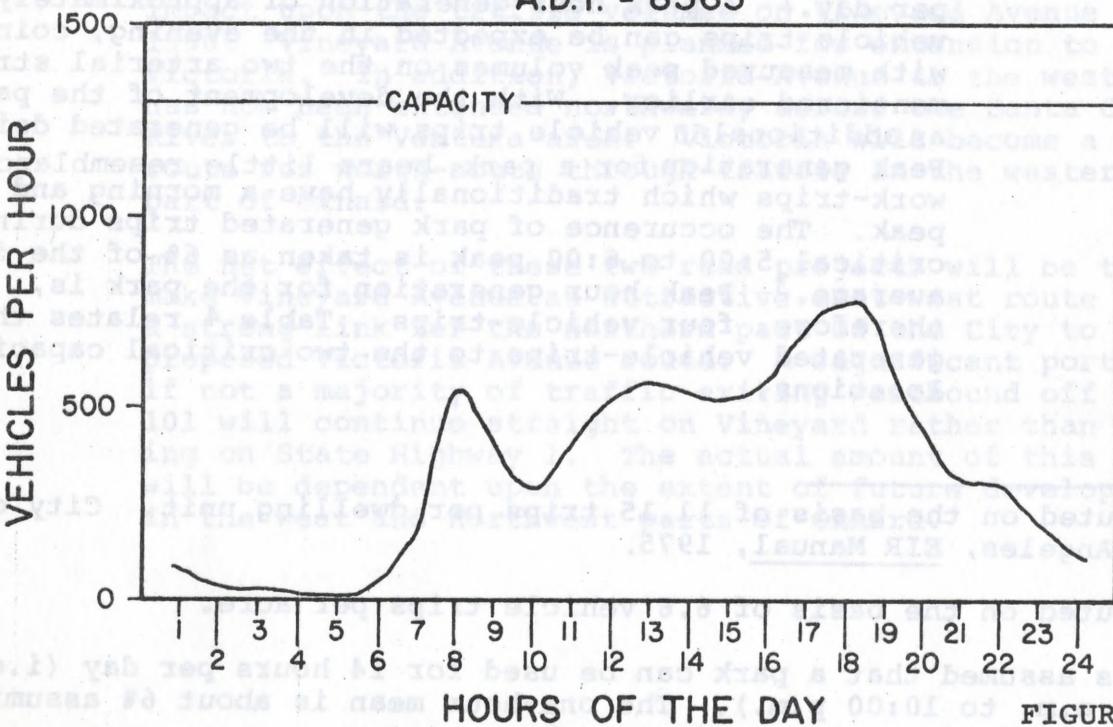


FIGURE-9 TRAFFIC MEASUREMENTS

"H" ST.
A.D.T. = 9052

VINEYARD AVE.
A.D.T. = 8363

EXISTING TRAFFIC FLOWS

b. Environmental Impact

On-site circulation will induce no traffic other than that which is destined for the project or originates within it, until such time as the property to the south develops. The project will then be accessible from two points within the neighborhood. In general, there are no major traffic generators within the interior of the neighborhood which may lead to circulation problems.

Since there are two major access paths to the residential areas of the neighborhood (Vineyard and "H" Street), traffic generation must be allocated between them. Unfortunately, no origin-destination information is available which can be applied to the neighborhood. It is estimated that peak hour trips can be allocated as follows:

TABLE 3
ESTIMATED DISTRIBUTION
OF GENERATED TRAFFIC

	<u>Edelweiss/Vineyard</u>	<u>Erica/"H" Street</u>
Project	60%	40%
Park Site	30%	70%

The project will generate an average of 457 vehicle trips per day.¹ A peak hour generation of approximately 46 vehicle trips can be expected in the evening, coinciding with measured peak volumes on the two arterial streets mentioned earlier. With the development of the park site, an additional 60 vehicle trips will be generated daily.² Peak generation for a park bears little resemblance to the work-trips which traditionally have a morning and evening peak. The occurrence of park generated trips during the critical 5:00 to 6:00 peak is taken as 6% of the daily average.³ Peak hour generation for the park is, therefore, four vehicle-trips. Table 4 relates the generated vehicle-trips to the two critical capacity locations.

¹Computed on the basis of 11.15 trips per dwelling unit. City of Los Angeles, EIR Manual, 1975.

²Computed on the basis of 6.6 vehicle trips per acre.

³It is assumed that a park can be used for 14 hours per day (i.e., 8:00 a.m. to 10:00 p.m.). The one-hour mean is about 6% assuming a uniform usage.

TABLE 4
TRAFFIC VOLUMES AND CAPACITIES

	Vineyard			"H" Street		
	ADT	PHT	% of Capacity ^a	ADT	PHT	% of Capacity ^a
Existing	8363	790	61%	9052	837	125%
Project	274	28	2%	183	18	3%
Park Site	19	1	0%	44	3	0%
Total	8656	819	63%	9279	858	128%
1990 Projection ^b	18900	1890	146%	9500	950	142%

^aD-Level Capacities

^bVentura County Transportation Study

The project will add some peak traffic to the Vineyard approach to State Highway 1. Vineyard Avenue, in this area, has ample reserve capacity at this time and can absorb project generated traffic without problem. Peak hour congestion on "H" Street at the Gonzales approach will be incrementally worsened by the project. The effect of this will be a probability of increased retention time at the intersection and possible stacking outside of the left-turn bay.

Two major road projects are planned which will have an impact upon the traffic volumes on Vineyard Avenue by 1990. Vineyard Avenue is planned for extension to Victoria. In addition, Victoria Avenue to the west has now been extended northward, across the Santa Clara River to the Ventura area. Victoria will become a major route for north-south through-traffic in the western part of Oxnard.

The net effect of these two road projects will be to make Vineyard Avenue an attractive east-west route and a strong link for the northern part of the City to the proposed Victoria Avenue route. A significant portion, if not a majority of traffic exiting westbound off U.S. 101 will continue straight on Vineyard rather than turning on State Highway 1. The actual amount of this traffic will be dependent upon the extent of future development in the west and northwest parts of Oxnard.

c. Mitigation

1. On-street parking on "H" Street may be further restricted in the vicinity of Gonzales Road during peak hours.
2. Signalization at the "H" Street - Gonzales Road intersection may be improved to reflect changing volumes.
3. Public transit may be provided within 0.5 miles of the project since none exists at present.

It can be surmised that these mitigation measures will not solve the projected off-site traffic problems, and the project will, in fact, contribute toward their occurrence.

It can be surmised that these mitigation measures will not solve the projected off-site traffic problems, and the project will, in fact, contribute toward their occurrence.

It can be surmised that these mitigation measures will not solve the projected off-site traffic problems, and the project will, in fact, contribute toward their occurrence.

It can be surmised that these mitigation measures will not solve the projected off-site traffic problems, and the project will, in fact, contribute toward their occurrence.

It can be surmised that these mitigation measures will not solve the projected off-site traffic problems, and the project will, in fact, contribute toward their occurrence.

3. Police Services

a. Environmental Setting and Impact

The City of Oxnard has a Police Department of 104 full time officers. This gives a manpower ratio of 1.16 officers per 1000 population. That ratio is approximately half of the national average of 2.5.

Public parks can provide special policing problems. They can serve as a setting for juvenile crime, gang related problems, and drug traffic. They have been a frequent setting for night time assaults in some urban areas. In some locations, these activities preclude intended recreational use of the park.

The Oxnard Police Department states that adequate service can be provided to the project and that no direct impact is felt by the Department. However, the cumulative effect of this project and other residential projects will necessitate an increase in the number of officers in order to provide adequate service to the entire jurisdiction.¹

The park is not a cause of criminal behavior though it may be a location for such behavior. There is no evidence to suggest that such activities will occur at the project associated park site; however, the design of the facility may be such that it impedes detection and enforcement efforts by the local police. No site plan for development of the park can be applied to the present proposal², but the project makes the east side inaccessible to police. The Police Department recommends that the park be so designed as to have three observable and approachable sides rather than two. The project precludes this objective over the short-term, although an open southerly side could be achieved when that portion of the neighborhood is developed.³

¹A memorandum of the Department, dated May 9, 1977, appears in Appendix IV.

²The existing plan does not consider the existing easement or the proposed land exchange.

³A modified project which can meet this objective appears in Section IV. A residential development proposed south of the park has been recently filed with the City.

b. Mitigation

1. Alternative designs which will meet policing objectives relating to the park are identified in Section IV.
2. A comprehensive manpower planning program on the part of the Oxnard Police Department could be instituted, which would determine manpower needs now and in advance of the cumulative effect of new development, and deploy resources in the most effective manner.

4. Fire Services

a. Environmental Setting and Impact

The City maintains a fire station on Vineyard Avenue north of the project. The station normally has two pumper-type vehicles and can respond to the project site within 3 minutes.

A Class III fire insurance rating has been given to the entire City. Fire flow measurements have been taken in the general area of the project at three locations. These are plotted on Figure-8 as are the location of the primary responding fire station and the Oxnard police station. Fire flows were 4500, 8100, and 4800 gallons per minute at the three locations.¹ The proximity of the Vineyard Avenue fire station means that response times will be rapid. A minimum fire flow of 1500 gallons per minute is recommended for residential areas by I.S.O. and this should be easily attainable based upon the measurements taken in the general area.

b. Mitigation

None indicated.

¹Insurance Services Organization Report, April 12, 1976.

5. School Systems

a. Environmental Setting

The project is in the Rio School District and the Oxnard Union High School District. The Oxnard Union High School District reports that all five of its schools are over-capacity during the 1976-77 school year. Project residents will attend Rio Mesa High School, the smallest facility within the district. It is located off of Central Avenue in the El Rio area, approximately 4 miles from the project. Bus transportation will be provided at no cost to project residents since they are over 2-1/2 miles from the school.

Rio Mesa High School has a designed capacity of 1400 pupils while enrollment during the 1976-77 school year was 1640. Some time ago, the district instituted staggered sessions to stretch available facilities, but overcrowding persists as an area-wide problem. Expansion of classroom space at the 50 acre Rio Mesa High School has been proposed by the district, but no funding has been found. Most school districts in the State of California have experienced problems in funding capital projects and in operational funding in the past few years, even in cases where the need for new facilities is critical.

The Rio School District has not been troubled by chronic demand for additional space. Children of project residents will attend El Rio School on Vineyard Avenue for kindergarten through 6th grades. This facility has a capacity of 570 and a current enrollment of 372. It is approximately 1 mile from the project as shown on Figure-11. The Rio Del Valle School will serve project students in grades 7 and 8. This facility has a capacity of 550 and a present enrollment of 450. Its location can be seen as the intermediate school on Figure-11.

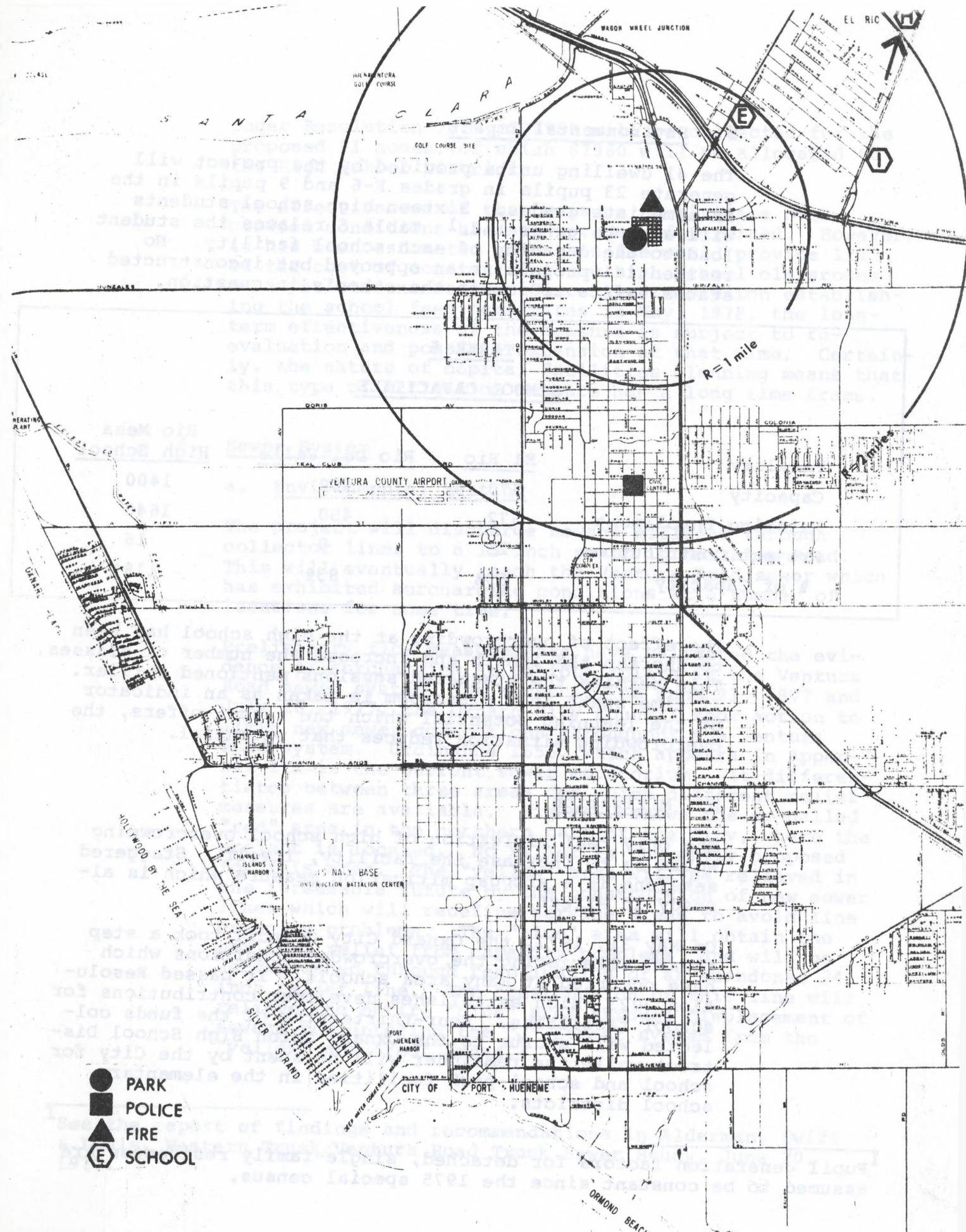


FIGURE-11
PUBLIC FACILITIES
-27-

b. Environmental Impact

The 41 dwelling units provided by the project will generate 23 pupils in grades K-6 and 9 pupils in the intermediate grades. Sixteen high school students will also be generated.¹ Table 5 relates the student load to the capacity of each school facility. No residential project in an approved but inconstructured status exists to impact the schools in question.

TABLE 5
SCHOOL CAPACITIES

Facility	<u>El Rio</u>	<u>Rio Del Valle</u>	<u>Rio Mesa High School</u>
Capacity	570	550	1400
Existing Enrollment	372	450	1640
Project Contribution	23	9	16
% of Capacity	69%	83%	118%

The effect of overcrowding at the high school has been to shorten the length and increase the number of classes. This permits the staggered sessions mentioned earlier. If time spent in a classroom is taken as an indicator of the learning potential which the school offers, the overcrowding situation reduces that potential.

c. Mitigation

The only real mitigation of high school overcrowding would be to increase the facility, itself. Staggered sessions is a stopgap mitigation measure which is already in effect.

On May 31, 1977, the Oxnard City Council took a step toward alleviating the overcrowded conditions which have occurred at many area schools. It passed Resolution 7023 which establishes developer contributions for school facilities. Four-thirteenths of the funds collected will accrue to the Oxnard Union High School District while the remainder will be spent by the City for school and school-park facilities in the elementary school districts.

¹Pupil generation factors for detached, single-family residences are assumed to be constant since the 1975 special census.

Under Resolution 7027, \$23985 will be collected for the proposed 91 homes, of which \$7380 will be allocated to the High School District.

The effectiveness of this measure to mitigate over-crowded conditions has not yet been determined. However, it has been estimated that this fee would provide 11% of the cost of constructing new high school classrooms on a per student basis. Since the resolution establishing the school fees terminates in May, 1978, the long-term effectiveness of the measure is subject to re-evaluation and possible extension at that time. Certainly, the nature of capital facilities planning means that this type of mitigation measure has a long time frame.

6. Sewer System

a. Environmental Setting

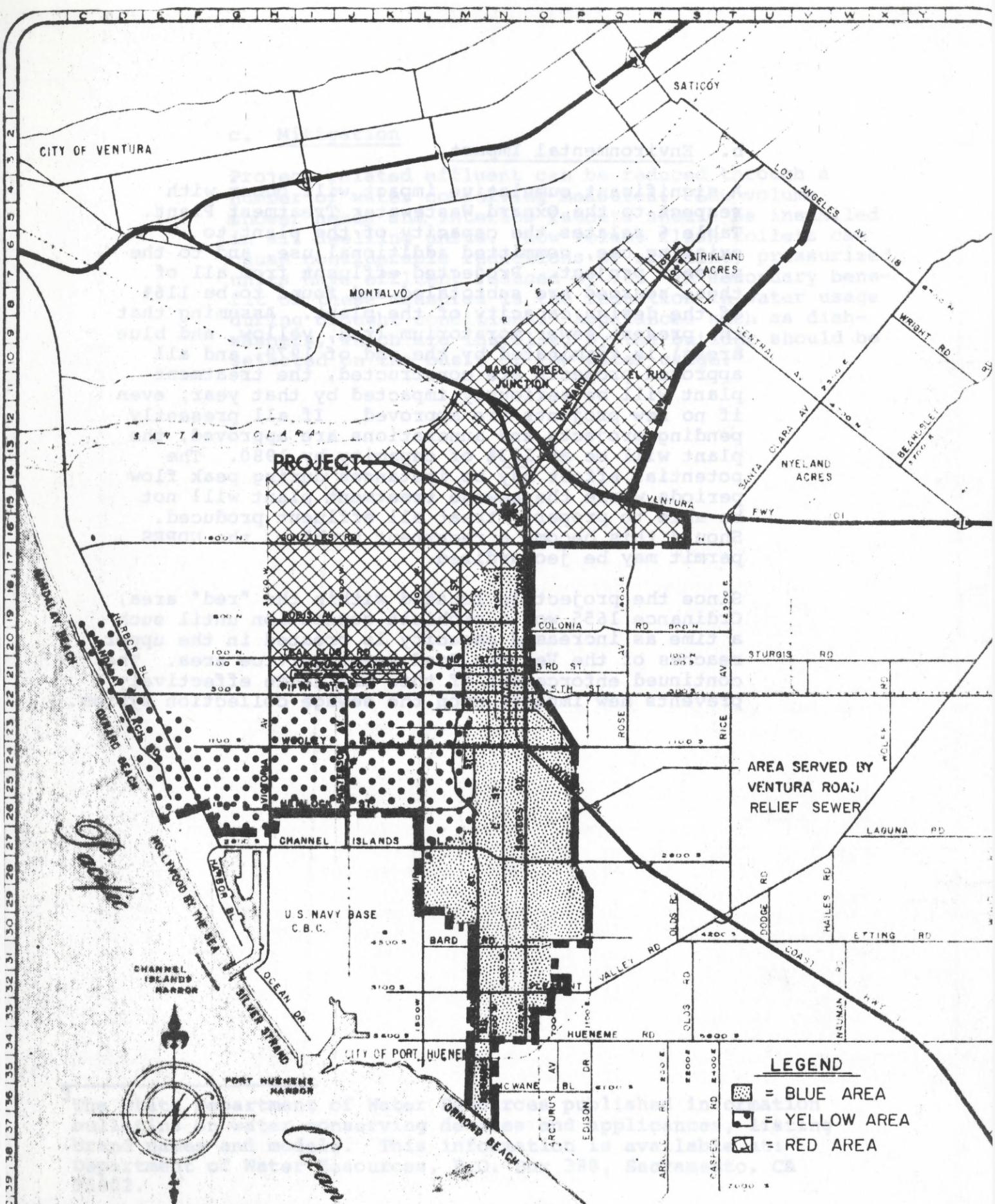
The project will discharge sewage effluent through collector lines to a 15 inch sewer in Gonzales Road. This will eventually reach the Ventura Road sewer which has exhibited surcharging conditions at a number of locations for some time.

Preliminary flow measurements have validated the evidence of surcharging at various points in the Ventura Road sewer system. As a result, on June 21, 1977 and July 26, 1977, the Oxnard City Council took action to limit new sewer connections throughout the Ventura Road system. Ordinance 1655, which appears in Appendix III is the current sewer moratorium. It differentiates between three areas for which different relief measures are available. Figure-12 shows the so-called "red" area in the northern part of the City, where the project is located. No relief is currently proposed for this area. The "yellow" area will be relieved in the foreseeable future by the construction of new sewer lines which will redefine service areas to avoid line capacity problems. The "blue" area will obtain the earliest relief from capacity problems, and will be accomplished through reactivation of an abandoned 24 inch relief line. The construction of this line will relieve the entire "blue" area through displacement of sewage now entering the "J" Street system from the "yellow" and "red" areas.¹

¹See the report of findings and recommendations in Alderman, Swift & Lewis, Western Truck/Ventura Road Trunk Sewer Study, June 20, 1977.

Effluent from the project will be ultimately conveyed to the Oxnard Wastewater Treatment Plant. This facility provides primary treatment which consists of settling tanks and skimming devices which remove most settleable solids, grease and oil. Effluent is pumped through a 30-inch and 48-inch outfall approximately 6000 feet offshore of the Ormond Beach area where it is diffused and mixed with ocean water. Total processing time is approximately 4 hours.

On occasion, the treatment plant has some difficulty meeting the discharge requirements of its National Pollution Discharge Elimination Systems (NPDES) permit (pursuant to the Water Pollution Control Act of 1972) due to influent characteristics and design difficulties. In order to meet current Federal and State standards, the treatment plant is being upgraded to a secondary sewage treatment facility. A contract to complete these facilities was awarded in May, 1977, and the upgraded treatment plant will be operational by late 1979.


The primary design treatment capacity of the Oxnard Wastewater Treatment Plant is 25 million gallons per day (MGD).

Once the plant is converted to secondary treatment, design capacity will be reduced to 22.6 MGD. Best available information for current average flow rates at the plant are approximately 13.0 MGD.²

Within a year, the City of Port Hueneme, the Pacific Missile Test Center - Point Mugu, and the Naval Construction Battalion Center - Port Hueneme (CBC) will be connected to the treatment plant. A total of 5.7 MGD out of the plant's 22.6 MGD peak flow secondary treatment capacity has been allocated to these three agencies. This amounts to approximately 25 percent of the plant's total capacity.

²Ventura County Regional Sanitation District, 208 Interim Report on Problem Areas, April, 1977.

b. Environmental Impact

A significant cumulative impact will occur with respect to the Oxnard Wastewater Treatment Plant. Table 6 relates the capacity of the plant to existing use, committed additional use, and to the present project. Projected effluent from all of these sources are subtotalled and found to be 116% of the design capacity of the plant. Assuming that the present sewer moratorium (red, yellow, and blue areas) is terminated by the end of 1979, and all approved projects are constructed, the treatment plant will be seriously impacted by that year, even if no new projects are approved. If all presently pending projects and annexations are approved, the plant will be at 123% of capacity by 1980. The potential effect may be instances during peak flow periods where the sewage treatment plant will not be able to properly treat all effluent produced. Should this become a recurrent problem, the NDPES permit may be jeopardized.

Since the project is located within the "red" area, Ordinance 1655 would prohibit connection until such a time as increased capacity is created in the upper reaches of the Ventura Road sewer service area. The continued enforcement of this ordinance effectively prevents new impacts upon the sewage collection system.

c. Mitigation

Project related effluent can be reduced through a number of water conserving measures. Low volume shower heads and interior faucets should be installed in all dwelling units. Low volume flush toilets can cause considerable reductions of effluent; pressurized units have effluent reduced by 90%. A secondary benefit of these measures is the reduction in water usage during drought conditions. Appliances such as dishwashers, which are installed by the builder should be selected on the basis of low water usage.³

³ The State Department of Water Resources published information bulletins on water conserving devices and appliances, listing brand names and models. This information is available at: Department of Water Resources, P.O. Box 388, Sacramento, CA 95802.

TABLE 6

INPUTS INTO THE

OXNARD WASTEWATER TREATMENT SYSTEM BY 1980

(Projected 22.6 MGD Peak Secondary Treatment Capacity)^a

	Average Daily Flowrate (MGD)	Peak Dry Weather Flowrate	% of Peak Capacity
Existing Use ^b	13.00	16.00	70.80
Projects Under Construction			
Residential	0.24	0.35	1.55
Non-Residential	0.11	0.16	0.71
Proposed Project	0.015	0.022	0.10
Projects Approved Outside Moratorium Area			
Residential	0.29	0.42	1.86
Non-Residential	1.51 ^a	2.17	9.60
Projects Approved in Moratorium Area			
Residential	0.80	1.15	5.09
Non-Residential	0.15	0.22	0.97
Extra-Jurisdictional Allocations	N/A	5.70	25.22
Subtotal	N/A	26.15	116.3
Pending Projects			
Residential	0.58	0.84	3.72
Non-Residential	0.10	0.14	0.62
Pending Annexations ^c			
Residential	0.12	.17	0.75
Non-Residential	0.27	.39	1.73
Total	N/A	27.69	122.8%

a - Includes 1.50 MGD Burlington Mills

b - VCRJD, 208 Report

c - Annexations 75-11, 75-16, 75-20. These are expected to be developed by the end of 1979.

7. Water Quality

a. Environmental Setting

Domestic water for the project is provided by the City of Oxnard whose water resources can be considered as primarily an imported water system. The Oxnard Plain basin is a large reservoir of water which is generally of a high dissolved salt content due to saltwater intrusion and other factors. Horizontal stratification of semi-impermeable clay caps retards the intermixing of water bearing strata. The result is the observable difference in dissolved salts in the upper strata when compared to the lower ones. Generally, the lower aquifers, such as the Fox Canyon system, have less dissolved solids than higher ones.

Because of the generally high levels of total dissolved solids (T.D.S., measured in parts per million) which accompanies local groundwater, the City has blended low cost, but poor quality local supplies with imported water purchased from the Metropolitan Water District. In the past, this blending operation has resulted in domestic water which achieves the state standard of 500 ppm T.D.S. Recently, however, the California drought conditions have limited the availability of imported water and the City has approved blending to achieve 900 ppm T.D.S. Drought conditions have not threatened the Oxnard area with a limitation of the quantity of available water but have resulted in a decrease in the quality of water supply.

b. Environmental Impact

The projected maximum daily water demand for Oxnard during 1977 is 25.36 million gallons per day (MGD).¹ The project will generate a maximum daily demand of 0.67 MGD.²

The cumulative effect of this project and all other approved projects is an increase of roughly 7.3 MGD average daily flow.³ During drought conditions, it is assumed that this will necessitate continued increases in withdrawal of water from the Oxnard Plain basin. This could further impact the quality of groundwater by increasing the likelihood of saltwater intrusion into the underground supply. Although intrusion may only occur in the upper water bearing strata, it could still effect irrigation activities.

¹Joe Yurko, Oxnard Public Works Department, Memorandum dated 2/2/77.

²Based upon 174 gallons per capita per day, and a peaking factor of 2.5.

³From Table 6. It is estimated that water usage equals average daily effluent plus 33%.

There is a remote possibility that increased withdrawal of groundwater will cause occurrences of ground subsidence or differential settlement. This threatens the structural integrity of buildings and infrastructure.⁴

c. Mitigation

1. Mitigation measures proposed to reduce project sewage effluent will also have the effect of reducing water demand. These include low-flow fixtures and appliances.
2. Street trees and any landscaping required as part of the project should be selected on the basis of drought resistancy.
3. The applicant may be required to include landscaping, or to offer it as an option to the homebuyer. Drought resistant plants and drip irrigation systems which conserve water should be required.
4. The City of Oxnard has adopted a water pricing structure which will encourage conservation of supplies. This rate structure is projected to become effective during the last half of 1977.

⁴See Section III B-4, Soils.

B. Natural Environment

1. Noise

a. Environmental Setting

The major source of recurring noise is vehicular movements on nearby arterials. Vineyard Avenue to the north, Oxnard Boulevard (State Highway 1) to the east and Gonzales Road and "C" Street to the south are potentially the significant contributors to the noise.¹ In each case, the noise impacting the site is dependent upon a number of variables which are taken into account in the noise assessment methodology.²

¹Noise at the project site varies directly with the volume of traffic present and varies inversely with the distance to the road surface. Peak hourly volumes, primarily occurring during the hours of 5:00 and 7:00 p.m. are used. The HUD method does not, however, deal with the lower noise levels occurring at night which may be accomplished by lower noise tolerances. The acceptability of noise levels will be reflective of the worse case situation occurring in that time span. Adjustments are made for speed levels and for the presence of stop-and-go traffic.

Automobile and truck traffic are treated separately, since each type of vehicle reacts differently in the generation of noise. Trucks, for example, generate more noise when accelerating from a stop than autos. The analysis of both components appear in Appendix III.

²U.S. Department of Housing and Urban Development "Noise Assessment Guidelines", August, 1971, are used in this analysis.

b. Environmental Impact

Using HUD acceptability criteria, auto generated noise is within "clearly acceptable" limits at the site. Noise from truck traffic was found to be "normally unacceptable". The chief source of truck generated noise is State Highway 1 with a minor source being Vineyard Avenue. Projections for 1990 traffic volumes¹ show that auto generated noise will still be within "clearly acceptable" limits by that year. No projections for truck traffic are available at the present time.

The effects of noise upon residential environments are primarily of a psycho-social nature and are very difficult to quantify. These can be grouped into interference with listening situations such as conversation, media communication and music; as well as non-listening activities. The latter include such situations as sleep, relaxation and concentration during mental activities. A federal study² has found that, "the combination of various interference effects results in an overall degradation of total well-being".

The "normally unacceptable" noise levels generated by truck traffic on State Highway 1 may be sufficient to cause some of the above effects in outdoor locations. No significant effects should be perceived in indoor locations, however, because of sound attenuation measures which result from existing building codes.

c. Mitigation

1. In order to attenuate noise from truck traffic on State Highway 1, an acoustic barrier such as a wall or berm/wall combination should be provided on the east side of the project as required and certified by an acoustic engineer. This noise barrier should be extensively landscaped.
2. No two-story houses should be permitted on the east side of the tract (Lot Nos. 15, 16, 21, 22, 23 and 29). This eliminates noise intrusion into upper stories of these homes.

¹Ventura County Traffic Study 1975.

²U.S. Environmental Protection Agency, "Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety", March, 1974, P.D.-1.

2. Flood Control/Drainage

a. Environmental Setting

The drainage pattern for the neighborhood is generally from northeast to southwest. Like most areas in Oxnard, the project area has flat topography and poor natural drainage.

Development which has occurred to the north of the project site has increased runoff beyond the capacity of downstream flood control facilities. Storm waters are presently routed to "H" Street and carried to storm drain culverts in Gonzales Road. The Gonzales Road storm drain is felt to be of limited capacity and cannot accommodate increased runoff during major storms.¹ With restrictive facilities downstream, portions of "H" Street are also subject to inundation. Figure-13 shows the areas of "H" Street which is considered to be a flood control problem.² Storm waters have been observed to cross the crown of the road in this area. This has caused inconvenience in the road but has not damaged structures.

At present, no off-site water sheet flows to the project site.³ The Oxnard Parks Department states that the proposed park will be graded toward Edelweiss Street as shown on Figure-14.⁴ This indicates that all runoff from the project will be the result of storm water falling on the site.

b. Environmental Impact

Figure 14 shows the general drainage for the project. Runoff for area A is 4.0 cubic feet per second (c.f.s.) for a 10-year storm. The cumulative flow through area B is 5.4 c.f.s. and the total cumulative flow through area C is 8.3 c.f.s. The latter figure is the 10-year storm runoff from the proposed project.⁵

Since the "H" Street - Gonzales Road flood control facilities cannot accommodate additional runoff, the addition of project generated runoff forms a significant impact upon the street system.

¹ Oxnard Public Works Department, May, 1977.

² Ben Wong, Oxnard Public Works Department, May 26, 1977.

³ George Blumfield, Oxnard Public Works Department, May 12, 1977.

⁴ Ibid.

⁵ Ibid.

c. Mitigation

Project generated storm runoff as well as potential increases from future development to the south can be routed so as to mitigate the impacts upon over-loaded facilities. Alternative measures as follows, should be subject to the review and approval of the Oxnard Public Works Department.

1. Subject to engineering feasibility, the applicant should acquire a drainage easement through property to the north and construct improvements so as to carry runoff to Vineyard Avenue; or
2. The applicant should be required to pay a prorata share of the total cost of providing drainage for the proposed project and the projected runoff of the southerly property. Considered costs should include all engineering, easement acquisition and improvements. It should provide flood control measures to channel water to the northern terminus of "C" Street and thereupon into an adequate storm drain.¹

¹This alternative is dependent upon the near term development of the land to the south of the project and the coordination of the engineering of both projects.

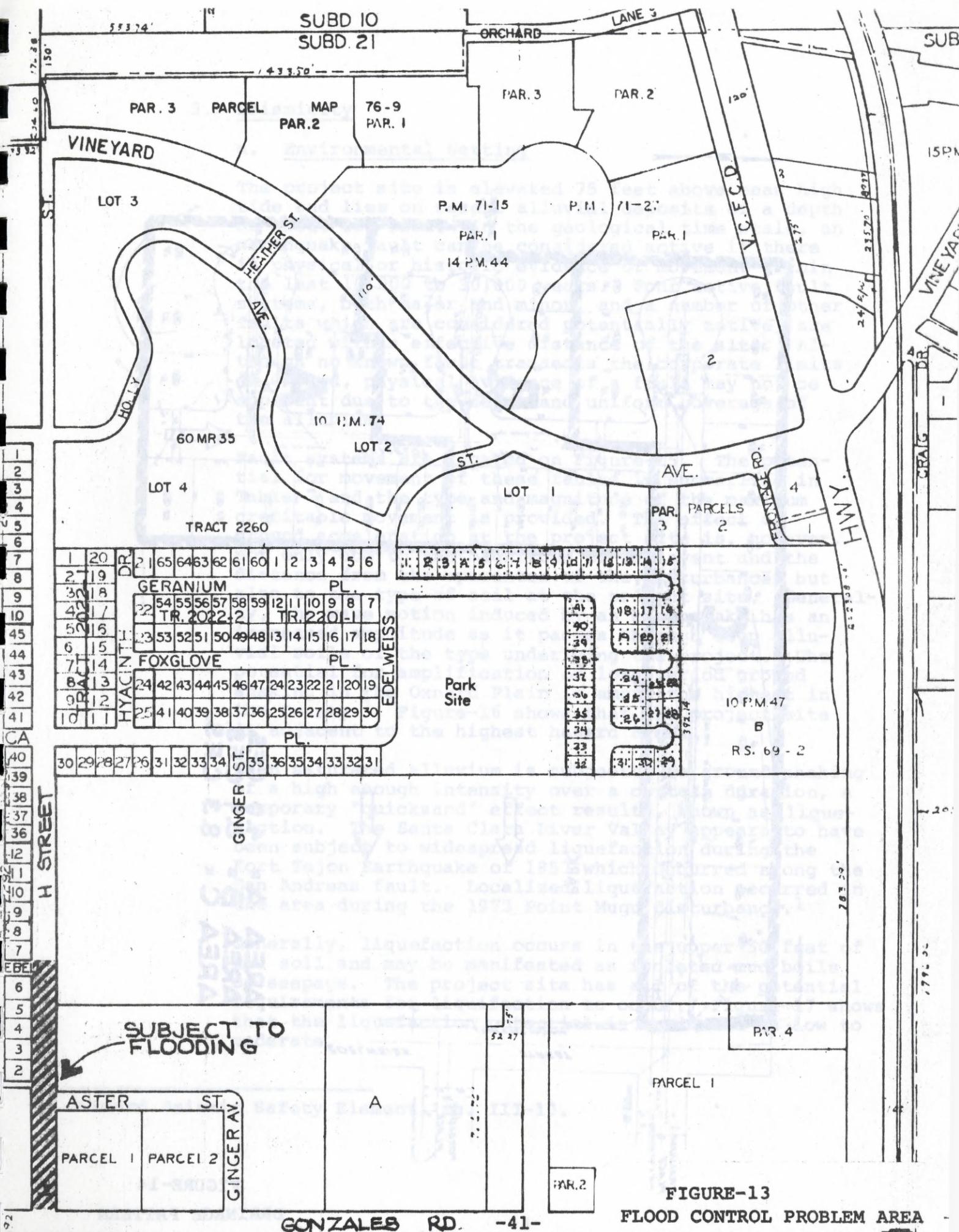
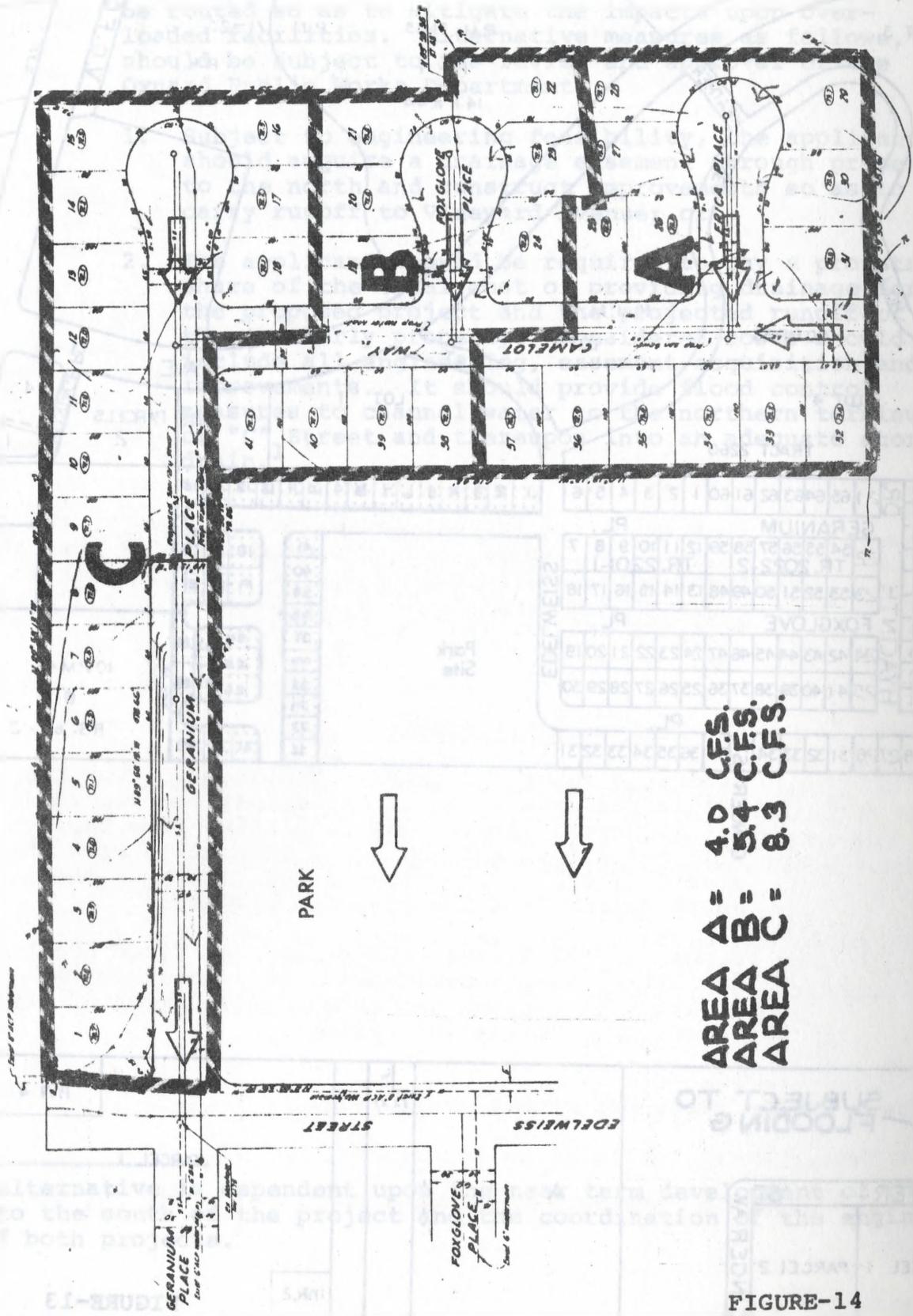



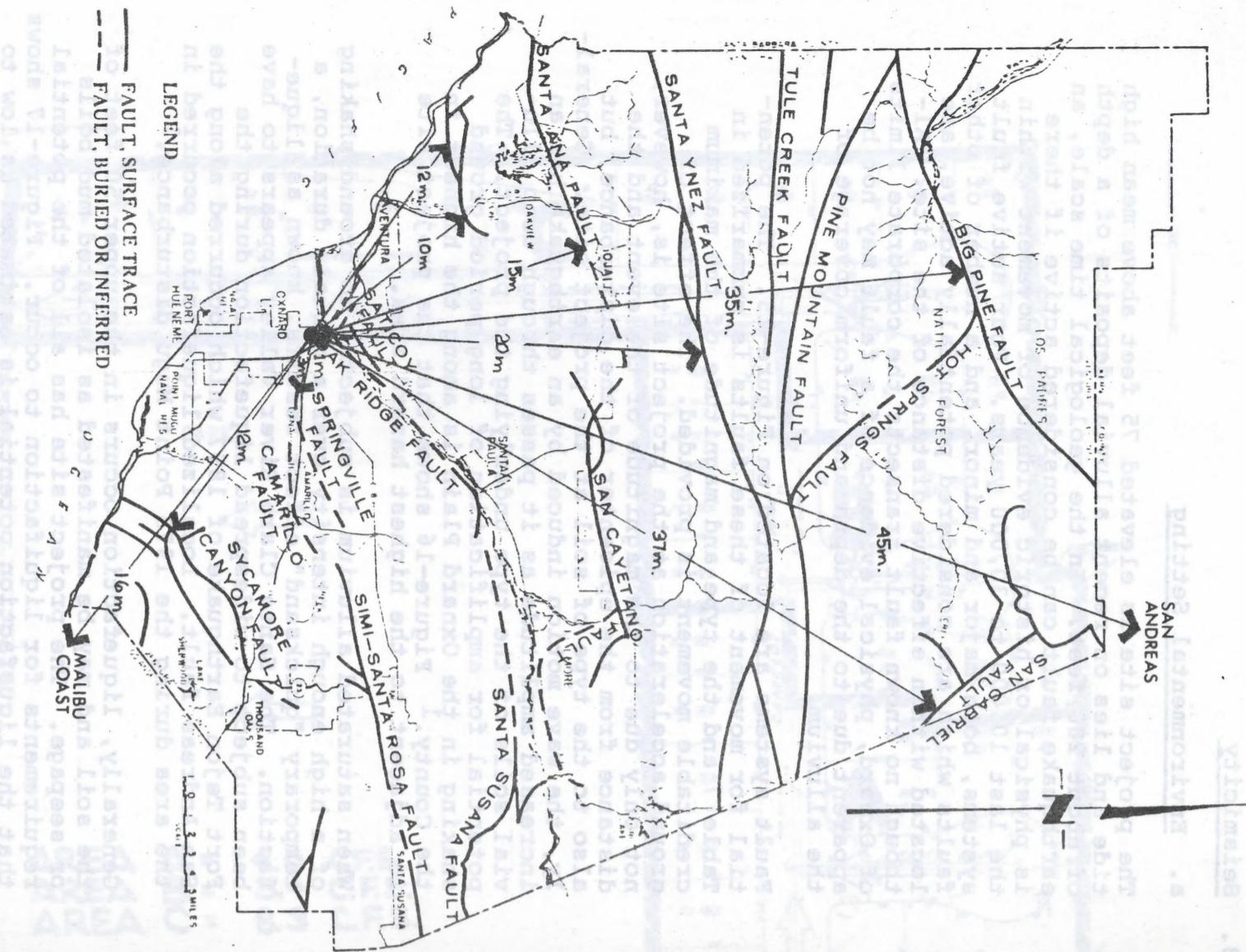
FIGURE-13
FLOOD CONTROL PROBLEM AREA

FIGURE-14 DRAINAGE PATTERN

3. Seismicity

a. Environmental Setting

The project site is elevated 75 feet above mean high tide and lies on recent alluvial deposits of a depth of about 280 feet. In the geological time scale, an earthquake fault can be considered active if there is physical or historic evidence of movement within the last 10,000 to 30,000 years. Four active fault systems, both major and minor, and a number of other faults which are considered potentially active, are located within effective distance of the site. Although no known fault transects the corporate limits of Oxnard, physical evidence of a fault may not be apparent due to the depth and uniform coverage of the alluvium.


Fault systems are located on Figure-15. The potential for movement of these faults is summarized in Table 7 and the type and magnitude of the maximum creditable movement is provided. The effect of ground acceleration at the project site is, however, not only due to the magnitude of the event and the distance from the epicenter of the disturbance, but also to the type of soil at the project site. Generally, the wave motion induced by an earthquake has an increased amplitude as it passes through deep alluvial soils of the type underlying the project. The potential for amplification of long period ground shaking in the Oxnard Plain is among the highest in the County.¹ Figure-16 shows that the project site is adjacent to the highest hazard area.

When saturated alluvium is subjected to ground shaking of a high enough intensity over a certain duration, a temporary "quicksand" effect results, known as liquefaction. The Santa Clara River Valley appears to have been subject to widespread liquefaction during the Fort Tejon Earthquake of 1857 which occurred along the San Andreas fault. Localized liquefaction occurred in the area during the 1973 Point Mugu disturbance.¹

Generally, liquefaction occurs in the upper 50 feet of the soil and may be manifested as isolated mud boils or seepage. The project site has all of the potential requirements for liquification to occur. Figure-17 shows that the liquefaction potential is estimated as low to moderate.

¹Oxnard Seismic Safety Element, pg. III-10.

ELEMENTS OF GEOLOGIC STRUCTURE

Source: James M. Montgomery, Consulting Engineers
V.R.C.S.D. Interim Master Plan of Water Reclamation
and Re-Use, November, 1974

FIGURE-15

-44-

TABLE 7
MAJOR FAULTS AND SEISMIC PARAMETERS

FAULT NAME	DISTANCE FROM SITE	TYPE OF MOVEMENT	MAXIMUM CREDIBLE EARTHQUAKE MAGNITUDE*	EVIDENCE FOR MOST RECENT ACTIVITY*
ACTIVE FAULTS (MOVED IN PAST 11,000 YEARS)				
San Andreas	50 mi.	Right Strike-Slip	M = 8.5	Moved in 1857, Fort Tejon
McGrath-Oakridge	6 mi.	Steep Reverse South Dip	7 - 7.5	Scarp in Older and Younger (?) Alluvium
Ventura	7 mi.	Reverse North Dip	7	Prominent Scarp on Aerial Photographs
Santa Ana	20 mi.	Reverse South Dip	7.5	Youthful Scarp in Ojai Valley, Alluvial Gravels Displaced
POTENTIALLY ACTIVE (MOVED IN PAST 3,000,000 YEARS)				
Simi-Springville-Camarillo	5 mi. (Projected)	Reverse North Dip	7	Youthful Geomorphic Features
Sycamore Canyon	8 mi.	Left Strike Slip	6.5	Does Not Displace (Holocene Marine), May Displace Older Alluvium
Red Mountain	17 mi.	Reverse, North & South Dips	7.5	Displaced Terrace Gravels
Sulphur Mountain	15 mi.	Reverse North Dip	6.5 - 7	Steepness of Face of Sulphur Mountain
Malibu Coast	11 mi. (Projected)	Reverse + Left Slip, North Dip	7.5 - 8	Terrace Deposits Displaced
Santa Ynez	25 mi.	Unknown Slip Steep Dip	7.5 - 8	Elevation Difference Across Fault, Earthquake Epicenters (?)
Big Pine	38 mi.	Left Slip	7.5 - 8	Terrace Deposits Displaced Stream Offsets
San Gabriel	40 mi.	Right Slip	7 - 7.5	Terrace Deposits Displaced (?)

*Information from CDMG, 1975; City of Oxnard, 1974

Potential Amplification of
Ground Shaking in the Oxnard Area

FIGURE-16

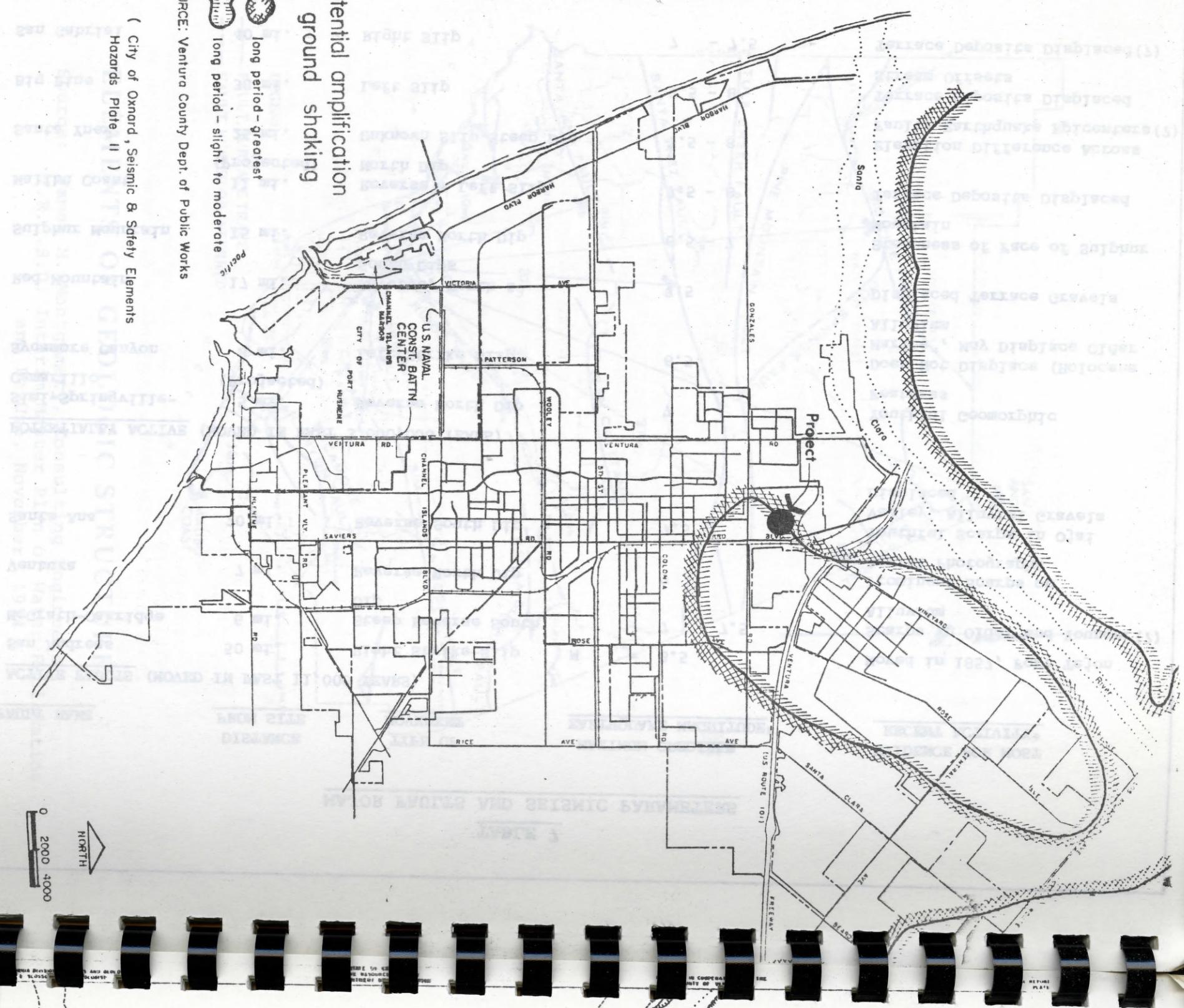
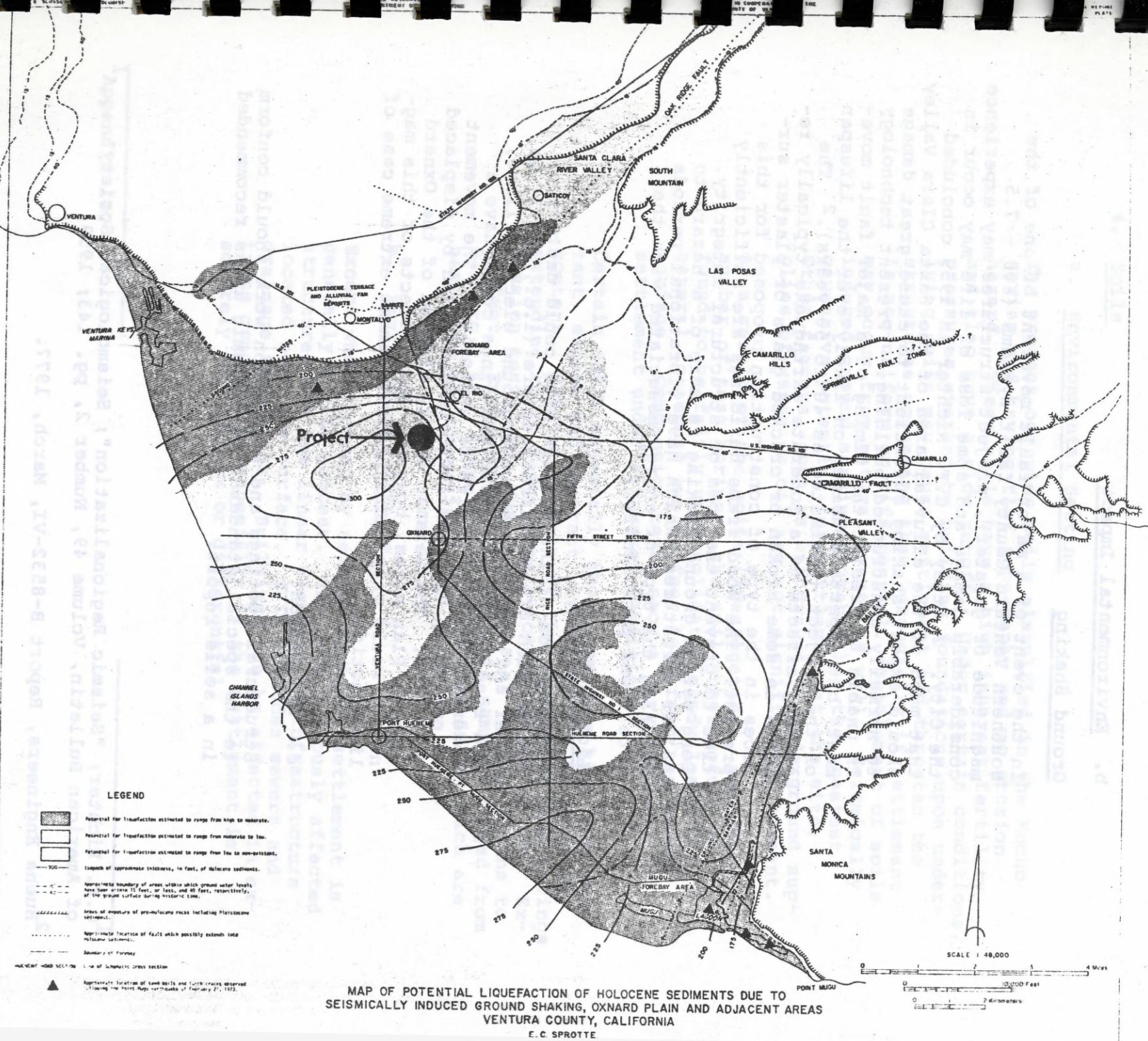



FIGURE-17
LIQUEFACTION

b. Environmental Impact

Ground Shaking

In the event of a major fault movement of one of the southern Ventura County fault systems (6.0 - 7.5 magnitude or greater), project structures may experience considerable damage and some loss of life may occur in the City. A study by C.F. Richter in 1959 concluded that much of the alluvial area of the Santa Clara Valley should expect shaking sufficient to cause great damage to normally constructed building.¹ Present technology is unable to predict the timing of a major fault movement, but experts consider on likely over the lifespan of the project (estimated as 40 to 50 years).² The shaking effects of a moderate earthquake typically results in some broken or cracked glass or plaster surfaces in the type of construction proposed for this project. The wood frame buildings are sufficiently tied to prevent the loss of structural integrity. Long period ground shaking is more of a hazard to taller structures, which have vibrational periods matching the type of energy associated with the site (long periodicity).

Liquefaction

Liquefaction at the project site could destroy or damage much of the infrastructure (i.e., gas lines, water and sewer pipes, underground electric lines, and road beds). Ruptured gas lines could have a secondary effect of fire or explosion. The movement of emergency vehicles could be inhibited by displaced road beds. The Seismic Safety Element of the Oxnard General Plan notes, however, that effects of this magnitude would only occur under the most extreme case of liquefaction.

c. Mitigation

Structural footings and foundation work should conform to the special standards for seismic areas recommended in a soils report.

¹C.F. Richter; "Seismic Regionalization"; Seismological Society of American Bulletin, Volume 49, Number 2, pg. 143; 1959.

²Buena Engineers, Report B-8532-VI, March, 1977.

4. Soils

a. Environmental Setting

The project occupies soils classified in the Mocho series and having flat topography and no erosion hazard. These soils have a high inherent fertility and also have a slow runoff. Under certain conditions, pressures exerted by building foundations upon underlying soils may cause settlement and threaten the structures occupying them, especially if settlement is non-uniform or differential. Settlement of soils may occur from natural events as well. Seismically induced ground shaking probably has the greatest causative potential for settlement at the site. Other factors, such as withdrawal of underground supplies of water or oil are not significantly present.

As a result of the soils investigation¹, including a number of test borings, the soil substructure was found to be fairly unconsolidated sandy loams with a general looseness two to four feet from the ground surface. Compaction tests show a certain amount of settlement under saturated conditions.

Certain soils especially those having a high clay content, expand and contract with variation in moisture content. Moisture levels at the site taken from borings extending to 10 feet, show a content of 6% to 40%. Expansion tests were run on samples at various depths to 10 feet. Expansiveness of the soil samples ranged from 0.3% to 2.5%. These figures indicate soils which are basically non-expansive.

b. Environmental Effects

Except when induced by seismic shaking, settlement is generally a slow process. The most seriously affected structures are the linear elements of infrastructure located near the surface. This includes sewers and drainage facilities. Buildings can be affected in extreme conditions, especially if the settlement is severely non-uniform or differential.

¹Appendix II.

Section III-B has shown that the project site is subject to a variety of seismic effects. These have a secondary effect upon soil stability in the nature of total or differential settlement of soils. The combination of ground shaking and settlement increases the likelihood of damage to infrastructure.

c. Mitigation

1. A careful search should be made for subsurface debris and abandoned water wells, septic tanks, etc. during construction operations. If any such subsurface cavities are encountered, they should be removed down to the firm underlying soil and properly backfilled and compacted as directed by a qualified Soils Engineer.
2. Due to the potential for settlement, all bearing soils should be recompacted in accordance with the recommendations of the Soils Investigation (Appendix II).
3. All driveways, sidewalks, patios and other paved areas should be recompacted in accordance with the specific recommendations of the Soils Investigation (Appendix II).
4. Due to the seismicity of the project site, all bearing values for footings should be increased by 1/3 in accordance with the recommendation of the Soils Investigation (Appendix II).

IV. ALTERNATIVES TO THE PROJECT

1. No Project

Under this alternative the project is not constructed and the site remains in agricultural production. The production of crops averaging 108 tons annually on this 7.8 acres of prime agricultural soil, would continue. The geoseismic hazard associated with life and property of the 154 residents, would not be present. The impacts upon public facilities and services (i.e., schools, sewer facilities, etc.) which are currently strained, will not be made.

No project implies that 41 single family houses will not be added to the housing market. This could have a minute cumulative effect of limiting the supply of that type of housing and contributing to what is already an inflationary housing market.

It is assumed that this alternative also implies that the park land exchange will not take place and that the neighborhood will not be completed. City owned park land, presently far below acreage standards, will not be further decreased by 0.77 acres. However, the present park site will have access only on one side should it be developed in the near term. Also, the easement across the park will not be abandoned, restricting the design and development of the park. Although the City may not block access across the easement, it has the option of exercising its power of eminent domain to condemn and acquire it in the public interest.

2. Modified Project (No Land Exchange)

Should the project be developed without the land exchange with the City, access would have to be taken either from the south (once land to south is developed) or over the easement. If the easement access configuration is considered, the project could be developed at once, granted the necessary permits. As with the first alternative, the City could condemn and acquire the easement or it could refuse to grant the necessary permits and approvals until such time as public access is made available to the southerly end of the site. This would mean that the "Modified Project" alternative could not take place until such time as the property to the south is developed.

The "Modified Project" alternative, with or without access from the park easement, will have essentially the same environmental impacts as does the primary project. There are two exceptions to this, the major one being in the area of land use, especially as it relates to park land as described above, where street improvements surrounding the park would not be constructed. Circulation impacts would also be affected; however, this would be dependent upon the actual design of the project and the large land area to the south. This alternative may have drainage impacts due to the lack of street gutters to carry runoff from the site.

3. Other Urban Land Uses

a. Higher/Lower Density Residential

In most respects the project site would be amenable to higher density residential use than is proposed. This would, however, mean that the neighborhood General Plan density problem described in Section III-A would be compounded. It would also mean that the population dependent impacts such as traffic, schools, and sewage would be more significant.

A lower density use would imply large, estate-type lots not presently found in the City. Population dependent impacts would be reduced to a minor extent.

b. Public Use

Certain public uses of the site can be considered viable alternatives to the project, and would remove nearly all negative impacts identified. The adjoining park site could be enlarged to 17 acres by acquisition of the project site. This would allow the development of major sports and recreational facilities to be used by residents of the north end of the City. That area now lacks such facilities except where they occur in schools.¹

A second conceivable public use of the site would be as a school. The General Plan calls for a school in the neighborhood and no land has yet been reserved. The combined General Plan park and school requirement is 16 acres and the project site and existing park site total 17 acres. By acquiring the project site and reallocating acreage, the public facility component of the General Plan of the neighborhood could be achieved. It is generally desirable to have school and park adjacent, to make better use of both facilities.

¹See Table 5

FIGURE-18

PROPOSED ALTERNATIVE IMPACTS MATRIX

	Project	No Project	Modified Project	Higher Density	Commercial-Industrial	Park Use	School Use
Loss of Agricultural Land	+	*	+	+	+	+	+
General Plan Non-Conformity	+	++	*	++	++	*	*
Circulation Problems	+	*	+	++	++	+	+
Sewage-Treatment Capacity	++	*	++	++	++	*	+
Sewage Collection Capacity	++	*	++	++	++	*	+
Police Service	+	*	+	+	+	+	*
Fire Service	*	*	*	*	+	*	*
Elementary School Capacity	*	*	*	*	*	*	*
High School Capacity	++	*	++	++	*	*	*
Geo-Seismic Hazards	+	*	+	+	+	*	+
Water Supply	+	+	+	+	+	+	+
Noise Susceptibility	+	*	+	+	+	++	+
Noise Generation	*	*	*	*	*	*	*
Flood Control/Drainage	++	*	++	++	++	+	+

++ Major Impact

+ Minor Impact

* No Impact

V. PERSONS, ORGANIZATIONS, AND REFERENCES CONSULTED

A. Persons Consulted:

Ray Thurston, Oxnard Parks Department
Tim Crompton, Oxnard Public Works Department
Bob Reitz, Oxnard Public Works Department
Joe Yurko, Oxnard Public Works Department
Ben Wong, Oxnard Public Works Department
George Blumfield, Oxnard Public Works Department
Officer Darrell Ulmer, Oxnard Police Department
Assistant Chief Roy Furr, Oxnard Fire Department
Louis John, Oxnard Union High School District
Charles K. Turk, Rio School District

B. Organizations Consulted

Buena Engineers, Inc.
1781 Callens Road
Ventura, CA 93003

C. References

Gruen & Associates, Oxnard 2000 General Plan, January, 1970
City of Los Angeles, Planning Department, EIR Manual for Private Projects, August, 1975
International Conference of Building Officials, Uniform Building Code, 1973 Edition, Chapter 29
City of Oxnard Planning Department, Seismic Safety Element, December, 1975
City of Oxnard, Parks & Recreation Element, 1969
City of Oxnard Planning Department, Basis for Planning, December, 1975
City of Oxnard Planning Department, E-74-13, 1975
City of Oxnard Planning Department, EIR E-76-8, October, 1976
City of Oxnard Planning Department, Official Zoning Map and Ordinance

U.S. Department of Agriculture, Soil Conservation Service,
Ventura County Soil Survey, April, 1970

U.S. Department of Commerce, Bureau of the Census,
1970 Census of Population

U.S. Environmental Protection Agency, Information Levels of Environmental Noise, March 1974

U.S. Department of Housing and Urban Development,
Noise Assessment Guidelines, August, 1971

Ventura County Department of Agriculture,
Ventura County Agricultural Crop Report, 1975

Ventura County Transportation Study, 1990 Projected Traffic Volumes (working documents)

ASL Engineers, Wastewater Relief Line and Pump Station, EIR, 1976

California Department of Water Resources, The California Drought, 1977, February 15, 1977

C. F. Richter, Seismic Regionalization, Seismological Society of America Bulletin, Volume 49, 1959

INITIAL STUDY
of
the
Cannabis
Industry
in
India

Conclusions and Recommendations

APPENDIX I

INITIAL STUDY

1. Initial Study (100,000 words) by Contractor (100,000 words)

2. Initial

3. Initial

4. Initial (100,000 words) by Contractor (100,000 words)

5. Initial (100,000 words) by Contractor (100,000 words)

6. Initial

7. Initial (100,000 words) by Contractor (100,000 words)

8. Initial (100,000 words) by Contractor (100,000 words)

City of Oxnard
Planning Department
Initial Study

I. BACKGROUND

A. Project: 7-601, T-2-854

B. Name of Proponent Standard Pacific-Venture

C. Address and Phone Number of Proponent: 32123 Lincoln
Canyon Blvd #212, Westlake Village, Ca.

D. Remarks _____

II. POTENTIAL SIGNIFICANT ENVIRONMENTAL IMPACTS OF THE PROJECT

A. SOCIAL

	<u>Yes</u>	<u>Maybe</u>	<u>No</u>
1. Demographics			
a. Will the project alter the distribution, or density of the human population of an area?	—	—	✓
b. Will the project have a significant impact on the social fabric or community structure of the area?	—	—	✓
2. Housing			
a. Will the project result in the displacement of community residents?	—	—	✓
b. Will the project affect existing housing, or create demand for additional housing?	—	—	✓

B. LAND USE

1. Is the project inconsistent with the General Plan?
2. Is the project not in conformance with existing zoning?
3. Will the project be incompatible with surrounding existing and/or planned land uses?

Yes Maybe No

C. AGRICULTURE

Will the project reduce any agricultural land in acreage or productivity?

D. AESTHETICS

Will the project result in the obstruction of any scenic vista or view open to the public?

Will the project result in the creation of an aesthetically incompatible or offensive site open to public view, or result in annoying light and glare?

E. TRANSPORTATION

Will the project result in:

1. Generation of additional off-site vehicular movement?

	<u>Yes</u>	<u>Maybe</u>	<u>No</u>
2. Effects on existing and/or future parking facilities, or demand for new parking?	—	✓	—
3. Impact upon existing and/or future transportation systems?	—	—	✓
4. On-site circulation problems?	—	✓	—
5. Alterations to waterborne, rail or air traffic?	—	—	✓
6. Increase in hazards to or from motor vehicles, bicyclists, pedestrians, marinecraft, aircraft, or railcars?	✓	—	—

F. SERVICES SYSTEMS AND FACILITIES

Will the project have a significant impact on any of the following existing or planned community facilities:

1. Public or private schools?	✓	—	—
2. Parks, recreation and/or open space?	—	✓	—
3. Health care and other social services?	—	—	✓
4. Police services?	—	✓	—
5. Fire protection?	—	✓	—
6. Water supply systems?	—	—	✓
7. Sewer systems and/or treatment plant?	✓	—	—
8. Storm drain systems?	—	✓	—
9. Solid waste disposal?	—	—	✓
10. Power or natural gas?	—	—	✓
11. Communications systems?	—	—	✓
12. Public facility maintenance (e.g. roadways)?	—	—	✓

G. PUBLIC HEALTH

Yes Maybe No

Will the project involve a risk of an explosion or the release of hazardous substances (including, but not limited to, oil, pesticides, chemicals or radiation) in the event of an accident or upset conditions?

— — —

Will the proposal result in the creation of any other health hazard or potential health hazard?

— — —

H. ENERGY

a. Will the project involve the use of substantial amounts of fuel or energy?

— — —

b. Will the project have a demand upon existing sources of energy, or require the development of new sources of energy?

— — —

c. Will the project fail to adequately conserve energy?

— — —

I. ECONOMICS

a. Will the project result in a net fiscal cost to the public?

— — —

b. Will the project have a net adverse economic impact?

— — —

J. ARCHEOLOGY/PALEONTOLOGY/HISTORICAL

Will the proposal result in an alteration of a significant archeological, paleontology or historical site, structure, object or building?

— — ✓

K. EARTH RESOURCES

Will the project result in or be affected by:

1. Unstable earth conditions or in changes in geologic substructures? — — ✓ —
2. Disruptions, displacements, compaction or overcovering of the soil? — — ✓
3. Change in topography or ground surface relief features? — — ✓
4. The destruction, covering or modification of any unique geologic or physical features? — — ✓
5. Any increase in wind or water erosion of soils, either on or off the site? — — ✓
6. Changes in deposition or erosion of beach sands, or changes in siltation, deposition or erosion which may modify the channel of a river or stream or the bed of the ocean or any bay, inlet or lake? — — ✓

L. HYDROLOGY

Will the project result in:

1. Changes in currents, or the course or direction of water movements, in either marine or fresh waters? — — ✓
2. Changes in absorption rates, drainage patterns, or the rate and amount of surface water runoff? — ✓ —

	<u>Yes</u>	<u>Maybe</u>	<u>No</u>
N. NOISE			
1. Will the project increase existing noise levels?	✓		

O. BIOLOGY (Terrestrial and Marine)

1. FLORA

Will the project result in:

- Change in the diversity of species of plants (including trees, shrubs, grass, crops, microflora and aquatic plants)?
- Reduction of the numbers of any unique, rare or endangered species of plants?
- Introduction of new species of plants into an area, or in a barrier to the normal replenishment of existing species?

2. FAUNA

Will the project result in:

- Changes in the diversity of species, or numbers of any species of animals (birds, land animals including reptiles, fish and shell-fish, benthic organisms, insects or microfauna)?
- Reduction of the numbers of any unique, rare or endangered species of animals?
- Introduction of new species of animals into an area, or result in a barrier to the migration or movement of animals?

	<u>Yes</u>	<u>Maybe</u>	<u>No</u>
3. Alterations to the course or flow of flood waters?	—	—	✓
4. Change in the amount of surface water in any water body?	—	—	✓
5. Discharge into surface waters, or in any alteration of surface water quality, including but not limited to temperature, dissolved oxygen or turbidity?	—	—	✓
6. Alteration of the direction or rate of flow of ground waters?	—	—	✓
7. Change in the quantity of ground waters, either through direct additions or withdrawals, or through interception of an aquifer by cuts or excavations?	—	—	✓
8. Reduction in the amount of water otherwise available for public water supplies?	—	—	✓

M. AIR QUALITY

Will the project result in:

1. Air emissions or deterioration of ambient air quality?
2. The creation of objectionable odors or dust?
3. Alteration of air movement, moisture or temperature, or an change in climate, either locally or regionally?

—	—	✓
—	—	✓
—	—	✓

Yes Maybe No

d. Disturbance of an area which serves as a habitat, food source, nesting place, source of water for wildlife or fish?

P. OTHER IMPACTS

III. DOCUMENTATION AND MITIGATION

E-76-13 (public facility impact)
E-76-8 (general environmental impact)

IV. MANDATORY FINDINGS OF SIGNIFICANCE

A. Does the project have the potential to degrade the quality of the environment, or curtail the diversity in the environment?

B. Does the project have the potential to achieve short-term, to the disadvantage of long-term, environmental goals? (A short-term impact on the environment is one which occurs in a relatively brief, definitive period of time while long-term impacts will endure well into the future.)

C. Does the project have impacts which are individually limited, but cumulatively considerable? (A project may impact on two or more separate resources where the impact on each resource is relatively small, but where the effect of the total of those impacts on the environment is significant.

d. Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

V. CITY OF OXNARD AND/OR RESPONSIBLE AGENCIES
COMMENTS ON FINDINGS.

Focus EIR

✓ 1. geological

✓ 2. noise

3. water quality / drainage

4. land use / parks / zoning

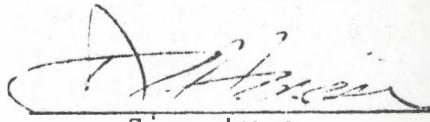
✓ 5. traffic

6. school, police, fire

7. Solid waste

VI. DETERMINATION

On the basis of this initial study:


I find the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because the mitigation measures described on an attached sheet have been added to the project.

I find the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

Determination is not possible at this time, further environmental review is required.

Date 4/12/77

Signature

For

Gene L. Hosford, AIP

CITY OF OXNARD
ENVIRONMENTAL IMPACT REPORT QUESTIONNAIRE
INSTRUCTION SHEET

As a result of preliminary staff evaluation it has been determined that your project may require an environmental impact report. The attached questionnaire is designed to help the Planning Staff evaluate your proposal and determine if such a report is required.

1. Please complete all sections of the questionnaire that apply to your project.
2. If a section does not apply or you do not know the answer please indicate by using not applicable (N/A) or unknown, as appropriate.
3. Return the questionnaire to the Oxnard Planning Department as soon as possible. You will be notified of the results of the staff evaluation.
4. If you do not understand a section or have any questions, feel free to contact the Environmental Concerns Section, Oxnard Planning Department, at 486-2601, extension 292.

Your cooperation in completing this questionnaire promptly will help the staff process your application as quickly as possible.

Should an E.I.R. be required, the Staff will advise you as to what additional information will be required.

CITY OF OXNARD
ENVIRONMENTAL IMPACT REPORT QUESTIONNAIRE
PROJECT NO. _____

I. Applicant (name, address, phone): STANDARD PACIFIC - VENTURA
32123 Lindero Canyon Road, Suite 212, Westlake Village, California 91361
Phone (213) 889-3765

II. Project name and location (include 8-1/2" X 11" location map).
See attached map.

III. Existing conditions:

A. Parcel size: 7.8 Acres

B. Existing use: Agriculture

C. Existing zoning: C-R (Community Reserve)

D. Existing uses adjacent: Trailer Park, Monday Buick Agency, agriculture, townhouse development and Fire station,

E. Location and size of existing utilities: 8" Sanitary sewer and water in Geranium Place, Electricity and Gas in Geranium Place.

F. Existing Access: Geranium Place

G. Is property subdivided? No

H. Is property annexed to the City? Yes If not, is annexation being considered at this time?

Environmental Impact
Report Questionnaire
Page 2

IV. Proposal:

A. Proposed use: Single Family detached subdivision

B. Number of structures or units: Forty

C. Types of structures or units: Frame-stucco houses

D. Square footage of each structure: Approximately 1,300 to 1,800 square foot tentatively proposed, not including garage.

E. Height of structures: Approximately 15' from top roof ridge line to finish grade.

F. Percentage of land coverage, by type, for total site:
Approximately 28% to 37%

G. Estimated water usage

Peak demand: 96 GPM domestic plus fire flow 1,000 GPM

H. Estimated amounts of sewage and/or waste water: _____

.065 cubic feet per second (Peak flow) _____

I. Estimated amount of storm water: _____

10 cubic feet per second, _____

V. For commercial and industrial proposals:

A. Hours of operation: N/A

B. Estimated number of employees: N/A

C. Estimated truck traffic (pick up and/or delivery):

N/A

D. Hazardous materials used, produced, stored or transported:

N/A

E. Type of outside lighting: N/A

Environmental Impact
Report Questionnaire
Page 4

F. Type of machinery to be used: N/A

G. Smoke, dust, fumes or odors produced: N/A

H. Estimated noise levels (on site and at property line):

N/A

V). Maps (Please include the following on 8-1/2" X 11"):

- A. Location map,
- B. Phasing map (if applicable),
- C. Market area map (for commercial proposals).

VII. Environmental impacts:

A. Beneficial - please note those areas where this proposal will have a beneficial impact on the environment:

The proposed project will provide shelter for people, will provide a buffer area between the existing commercial uses to the east and the proposed park, and will create a more compatible adjacent development

Environmental Impact
Report Questionnaire
Page 5

relationship of housing/park vs. park/agriculture.

B. Adverse - please note those areas where this proposal will have an adverse impact on the environment, and note your proposals to minimize the adverse impacts.

There will be the loss of 7.8 acres of agricultural production
and an increased demand on City and school services. City and
school services will be offset by the increased assessed
valuation and added revenues created by the housing development.

The applicant identified in Section I hereby certifies that the information supplied on this questionnaire is true and accurate to the best of his knowledge.

T. William Hale

January 27, 1977
Date

for STANDARD PACIFIC - VENTURA
Title

Signature

APPENDIX II
PRELIMINARY SOIL INVESTIGATION

1. *What is the most important thing you can do to help your child succeed in school?*

2. *What are the most important things you can do to help your child succeed in school?*

3. *What is the most important thing you can do to help your child succeed in school?*

4. *What are the most important things you can do to help your child succeed in school?*

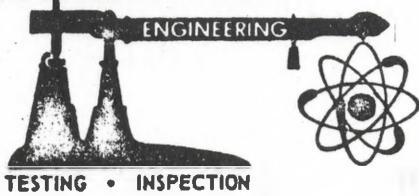
5. *What are the most important things you can do to help your child succeed in school?*

6. *What are the most important things you can do to help your child succeed in school?*

7. *What are the most important things you can do to help your child succeed in school?*

8. *What are the most important things you can do to help your child succeed in school?*

9. *What are the most important things you can do to help your child succeed in school?*


PRELIMINARY SOIL INVESTIGATION
OF
TRACT 2854
NEAR
OXNARD BLVD. AND VINEYARD AVE.
IN
OXNARD, CALIFORNIA

for
Standard Pacific-Ventura
32123 Lindero Canyon Road, Suite 212
Westlake Village, California 91361

May 1977
B-8428-T01

Prepared by
Buena Engineers, Inc.
1781 Callens Road
Ventura, California 93003
805-642-6727

BUENA Engineers, Inc.

1781 CALLENS ROAD • VENTURA, CALIFORNIA 93003 • PHONE (805) 642-6727 - (805) 497-2401

May 26, 1977

77-5-184
Job No. B-8428-V01

PROJECT: Tract 2854

Southwest of Vineyard Ave. and Oxnard Blvd.
Oxnard, California

SUBJECT: Update of Preliminary Soils Investigation
dated May 16, 1977

During a telephone conversation with the City of Oxnard, the following was brought to our attention: In the above referenced Preliminary Soil Investigation, it was stated, "Investigation was performed to evaluate a fifteen (15) lot subdivision." It has now changed to forty-one (41) lots. Due to the uniform nature of site soils and the tract's location, even if total acreage were to expand with forty-one (41) lots, requirements and data from the above referenced report would still obtain for the new area.

At the top of page 8, two sentences read, "Any or all submissions of this report shall be in its entirety. Under no circumstances shall this report be summarized or synthesized to be quoted out of context for any purpose." This paragraph is inserted in all of our reports, primarily to prevent any misconstruing of overall meaning of our report or parts thereof. Insofar as an EIR is concerned, providing professional people are writing this EIR, summarization will be permitted as this would have no effect on bidding or other physical treatment of the site or site soils. In all other respects, the above referenced report will obtain as is written.

Respectfully submitted,

BUENA ENGINEERS, INC.

F. D. Didier, Jr.

FDD/NGH/cec

Reviewed and Approved

Norman G. Hallin
C. E. 7370

Copies: 3 - City of Oxnard, Planning Dept.; attn: Richard Floch
3 - Standard Pacific; 1 - file

FIELD OFFICES:

THOUSAND OAKS
(805) 495-8484

SANTA BARBARA
(805) 966-9912

SAN LUIS OBISPO
(805) 544-6187

May 16, 1977

77-5-127
Job No. B-8428-T01

INTRODUCTION

Purpose:

This investigation was performed to evaluate a 15-lot subdivision. It is proposed to construct a residential single-family subdivision.

Scope:

Field work was initiated on May 2, 1977, in which five (5) borings were drilled to a depth of fifteen (15) feet. Cores were taken at selected intervals in each boring with a split-ring sampling tube. Core samples were logged in the field, returned to the laboratory, evaluated and tested. Results of this field exploration and laboratory tests which form the basis of our recommendations are presented in the attached appendix.

Site Location and Conditions:

The subdivision is located south of Vineyard Avenue and west of Oxnard Boulevard, Oxnard, California. Topographically, this area is essentially flat and appears to drain to the west.

May 16, 1977

-2-

77-5-127
Job No. B-8428-T01

At present time, the proposed construction area is planted in row type crops. All of this will require cleaning and removal prior to any construction. There is a slight depression on the northern part of the west boundary of the property. Cypress trees border the property on the east and north.

SOIL MECHANICS

Bearing soils within the proposed construction site are considered to be in the non-expansive and low expansive ranges showing Expansion Indices of 3 and 28 when tested by the ASCE "Expansion Index Test Method." Therefore, all footings and slabs shall be designed for soils in the weighted expansion category of 0-20 and 21-50 as described in the U.B.C. Table 29-A in the appendix of this report. This table is quite explicit in giving footing width, footing depth, reinforcement for foundations for 1, 2 and 3-story structures. Additionally, this table gives slab thickness, reinforcement, total thickness of sand with vapor barrier, premoistening control prior to pouring concrete in both foundations and slabs.

In-place densities indicate a general looseness from two (2) to four (4) feet below existing ground surface and consolidation tests performed on undisturbed samples at a depth of three (3) feet confirm this looseness. The consolidation tests show a slight settlement under constant load when water is added. Therefore, it is recommended that bearing soils be recompacted in order to limit the potential settlement to a reasonable amount. All areas to receive fill should be undercut by three (3) feet and the resulting surface shall be scarified and recompacted to a minimum of ninety percent (90%) of maximum density. Cut areas shall be undercut two (2) feet below finished grade and the exposed surface scarified and

compacted to a minimum of ninety percent (90%) of maximum density. The previously removed materials or an acceptable import may then be placed and compacted to a minimum of ninety percent (90%) of maximum density.

Driveways, sidewalks and other areas to be improved outside the recompacted areas of the buildings shall be scarified to a depth of twelve (12) inches and recompacted to a minimum of ninety percent (90%) of maximum density.

It is estimated that during recompaction of original soils and compaction of fill materials there will be between 0.4 and 0.5 feet consolidation and approximately twenty percent (20%) shrinkage.

For conditions set forth under this method of treatment, a safe bearing value of 1700 psf may be used for continuous footings bottomed a minimum of twelve (12) inches below finished adjacent grade. An additional 160 psf may be used for each additional six (6) inches in depth for the foundation bottom. These values are for dead plus live loads and a one-third (1/3) increase may be assumed when considering seismic and wind loads in addition to dead plus live loads.

A friction coefficient when used for dead loads only of 0.49 may be used in designing for lateral resistance where concrete is placed on good firm natural soils or compacted fill. For design purposes,

May 16, 1977

-5-

77-5-127
Job No. B-8428-T01

passive pressure may be taken as the equivalent of a fluid weighing 295 pounds per cubic foot. Lateral pressure shall be equal to 34 pounds per cubic foot plus the surcharge load.

Considering data presented above with respect to bearing values, coefficient of friction, passive and active pressures, etc., these values are good only for soils that have an in-place density of ninety percent (90%) or higher. This density may be either natural in-place densities found in the native soils or it may be a recom-pacted density of previously loose site soils. In any event, these values will not hold if the in-place densities are below ninety per cent (90%) of maximum density.

GENERAL REQUIREMENTS

A soils engineer shall supervise grading operations to insure compliance with recommendations and local ordinances. Any areas to receive fill shall be prepared by scarifying to a minimum depth of twelve (12) inches, moistening or drying to near optimum moisture and compacting. Fill materials may then be placed in compacted layers, compacted to a minimum of ninety percent (90%) of maximum density. No debris, trash or organic material of any nature shall be included in areas to receive fill or fill material. Any soft spots due to excessive moisture should be removed, dried or replaced with suitable material. Densities shall be determined in accordance with ASTM D 1557, Method A, and all compaction shall be a minimum of ninety percent (90%) of maximum density unless otherwise specified. Unless otherwise noted, all grading will be in compliance with Chapter 70 of U.B.C.

It will be the responsibility of the owner of record for notifying the foundation engineer whenever the job is to start or continue after a shut-down of grading operations. This report will be reviewed by all controlling authorities for the project and as a result, additional requirements may be deemed necessary.

Borings were located in a configuration to obtain a maximum amount of subsurface information. Requirements of this report are based upon the assumption that soil conditions do not deviate from those disclosed to depths penetrated in these borings. Recommendations of this report are based upon presently proposed construction. If there are any variations from this, the soils engineer should be notified so that supplemental recommendations can be given if found to be necessary.

Findings of this report are valid as of this date; however, changes in conditions of a property can occur with passage of time whether they be due to natural processes or works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards occur whether they result from legislation or broadening of knowledge. Accordingly, findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of one (1) year.

This report was prepared as an independent soils engineering evaluation. All comments, observations, calculations, conclusions and recommendations are based on all data available to this laboratory at this time. The writer has no economic interest or ownership in subject property nor does he anticipate or expect to receive an interest therein as payment for services rendered in preparation of

May 16, 1977

-8-

77-5-127
Job No. B-8428-T01

this report. Any or all submissions of this report shall be in its entirety. Under no circumstances shall this report be summarized and synthesized to be quoted out of context for any purpose.

Respectfully submitted,

BUENA ENGINEERS, INC.

Reviewed and Approved

REB

Raymond E. Brannen

REB/NGH/cec

Norman Hallin
Norman G. Hallin
C. E. 7370

Copies: 6 - Standard Pacific
1 - City of Oxnard, Planning Dept.
attn: Don Hineser
1 - file

BUENA ENGINEERS, INC.

APPENDIX

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

1998-1999
1998-1999
1998-1999
1998-1999

INVESTIGATION AND ANALYSIS

On May 2, 1977, five (5) test borings six (6) inches in diameter were drilled to a depth of fifteen (15) feet using a truck-mounted power auger. Undisturbed samples were taken by means of a split-ring sampling tube at various depths in each boring. Soils exposed by drilling were found to be stratified and comprised of silty fine sands underlain by clayey silts. No free water was found to depths penetrated.

After a visual field classification, samples were returned to the laboratory, classified and tested. Three (3) samples were taken as being representative of soil types encountered and were subjected to the following tests: maximum density-optimum moisture (ASTM D 1557-70, Method A), direct shear, consolidometer, hydrometer analysis and expansion per the ASCE "Expansion Index Test Method."

Locations of borings with respect to property can be found on Plate A. Boring logs with soil classification, depths encountered and test results are shown on Plate B.

Consolidation tests were performed on undisturbed samples to determine soil compressibility. To illustrate effective moisture of soil compressibility, water was added to the sample at a surcharge of 500 psf. Results of these tests are shown on Plate C.

Direct shears were performed on remolded samples to determine soil strength for ideal conditions. These samples were subjected to saturated moisture limits and tested at different surcharge limits. Results of shear tests are shown on Plate D.

Plate E gives a graphic representation of maximum density-optimum moisture curves for the ASTM D 1557-70, Method A.

May 16, 1977

77-5-127
Job No. B-8428-T01

TEST RESULTS

Soil	A1	A2	B1
Maximum Density pcf	124.8	121.8	116.4
Optimum Moisture %	9.3	11.6	13.1
Angle of Internal Friction	29.3		20.7
Cohesion psf	143		341
Expansion Index	3		28
Grain Size - Gravel	0.9	0.5	0.0
Sand	57.8	62.5	24.8
Silt	30.2	27.8	55.1
Clay	11.1	9.2	20.1

A1 Sand: Dark brown silty fine grained sand

A2 Sand: Light brown silty fine to medium grained sand

B1 Silt: Light brown fine sandy clayey silt

May 16, 1977

77-5-127
Job No. B-8428-T01

IN-PLACE DENSITIES

<u>Boring & Depth</u>	<u>Dry Density</u>	<u>% Moisture</u>	<u>Relative Compaction</u>
1 @ 1.0	101.9	7.9	82
	94.9	17.5	82
	104.6	17.9	84
	88.0	35.1	76
2 @ 1.0	89.8	20.9	72
	96.5	15.5	77
	102.3	20.8	82
	82.5	38.6	71
3 @ 1.0	93.7	10.3	75
	93.9	17.6	75
	99.4	16.7	82
	82.2	39.9	71
4 @ 1.0	87.3	8.3	70
	96.5	11.4	77
	100.6	6.3	81
5 @ 1.0	102.2	6.2	82
	98.1	8.3	84
	99.5	22.0	85
	87.2	29.9	75

IRC TABLE NO. 29-A
MINIMUM FOUNDATION REQUIREMENTS
(Including Expansive Soils Requirements [11], [111])

Weighted Expansion Index	Footings for Slab			Concrete Slabs			Piers under Raised Floors (9)
	All Perimeter Footings (6)	Interior Footings For Slab and Raised Floors (6)	Reinforcement for Continuous Footings (3)	4" Minimum Thickness	Reinforcement (4)	Total Thickness of Sand	
0	1 5 12 6	12	12	4"	6x6-10/10	2"	Recommend Moistening of Ground Prior to Placing Concrete Only
1	2 6 15 7	18	18	None Required	6x6-10/10	2"	120% of Optimum Moisture Content to a Depth of 21" Below Lowest Adjacent Grade. Tested.
2	3 8 15 8	24	24		6x6-10/10	4"	120% of Optimum Moisture Content to a Depth of 21" Below Lowest Adjacent Grade. Tested.
3	10 12 9	24	24	1-#4 Top & Bottom	6x6-10/10	4"	120% of Optimum Moisture Content to a Depth of 27" Below Lowest Adjacent Grade. Tested by Qualified Soils Lab.
4	12 15 10				6x6-6/6	4"	140% of Optimum Moisture Content to a Depth of 33" Below Lowest Adjacent Grade. Tested by Qualified Soils Lab.
5	14 18 12				43 @ 24" e.w		
6	16 20 15				43 Bars @ 24" in ext. Footing and Bent 3° Into Slab (10)		
7	18 22 18						
8	20 25 20						
9	22 28 22						
10	24 30 24						
11	26 32 26						
12	28 34 28						
13	30 36 30						
14	32 38 32						
15	34 40 34						
16	36 42 36						
17	38 44 38						
18	40 46 40						
19	42 48 42						
20	44 50 44						
21	46 52 46						
22	48 54 48						
23	50 56 50						
24	52 58 52						
25	54 60 54						
26	56 62 56						
27	58 64 58						
28	60 66 60						
29	62 68 62						
30	64 70 64						
31	66 72 66						
32	68 74 68						
33	70 76 70						
34	72 78 72						
35	74 80 74						
36	76 82 76						
37	78 84 78						
38	80 86 80						
39	82 88 82						
40	84 90 84						
41	86 92 86						
42	88 94 88						
43	90 96 90						
44	92 98 92						
45	94 100 94						
46	96 102 96						
47	98 104 98						
48	100 106 100						
49	102 108 102						
50	104 110 104						
51	106 112 106						
52	108 114 108						
53	110 116 110						
54	112 118 112						
55	114 120 114						
56	116 122 116						
57	118 124 118						
58	120 126 120						
59	122 128 122						
60	124 130 124						
61	126 132 126						
62	128 134 128						
63	130 136 130						
64	132 138 132						
65	134 140 134						
66	136 142 136						
67	138 144 138						
68	140 146 140						
69	142 148 142						
70	144 150 144						
71	146 152 146						
72	148 154 148						
73	150 156 150						
74	152 158 152						
75	154 160 154						
76	156 162 156						
77	158 164 158						
78	160 166 160						
79	162 168 162						
80	164 170 164						
81	166 172 166						
82	168 174 168						
83	170 176 170						
84	172 178 172						
85	174 180 174						
86	176 182 176						
87	178 184 178						
88	180 186 180						
89	182 188 182						
90	184 190 184						
91	186 192 186						
92	188 194 188						
93	190 196 190						
94	192 198 192						
95	194 200 194						
96	196 202 196						
97	198 204 198						
98	200 206 200						
99	202 208 202						
100	204 210 204						
101	206 212 206						
102	208 214 208						
103	210 216 210						
104	212 218 212						
105	214 220 214						
106	216 222 216						
107	218 224 218						
108	220 226 220						
109	222 228 222						
110	224 230 224						
111	226 232 226						
112	228 234 228						
113	230 236 230						
114	232 238 232						
115	234 240 234						
116	236 242 236						
117	238 244 238						
118	240 246 240						
119	242 248 242						
120	244 250 244						
121	246 252 246						
122	248 254 248						
123	250 256 250						
124	252 258 252						
125	254 260 254						
126	256 262 256						
127	258 264 258						
128	260 266 260						
129	262 268 262						
130	264 270 264						
131	266 272 266						
132	268 274 268						
133	270 276 270						
134	272 278 272						
135	274 280 274						
136	276 282 276						
137	278 284 278						
138	280 286 280						
139	282 288 282						
140	284 290 284						
141	286 292 286						
142	288 294 288						
143	290 296 290						
144	292 298 292						
145	294 300 294						
146	296 302 296						
147	298 304 298						
148	300 306 300						
149	302 308 302						
150	304 310 304						
151	306 312 306						
152	308 314 308						
153	310 316 310						
154	312 318 312						
155	314 320 314						
156	316 322 316						
157	318 324 318						
158	320 326 320						
159	322 328 322						
160	324 330 324						
161	326 332 326						
162	328 334 328						
163	330 336 330						
164	332 338 332						
165	334 340 334						
166	336 342 336						
167	338 344 338						
168	340 346 340						
169	342 348 342						
170	344 350 344						
171	346 352 346						
172	348 354 348						
173	350 356 350						
174	352 358 352						
175	354 360 354						
176	356 362 356						
177	358 364 358						
178	360 366 360						
179	362 368 362						
180	364 370 364						
181	366 372 366						
182	368 374 368						
183	370 376 370						
184	372 378 372						
185	374 380 374						
186	376 382 376						
187	378 384 378						
188	380 386 380						
189	382 388 382						
190	384 390 384						
191	386 392 386						
192	388 394 388						
193	390 396 390						
194	392 398 392						
195	394 400 394						
196	396 402 396						
197	398 404 398						
198	400 406 400						
199	402 408 402						
200	404 410 404						
201	406 412 406						
202							

OXNARD BLVD.
(U.S. HWY 1)

BORING LOCATIONS
TRACT 2854

BUENA ENGINEERS, INC.

DATE: 5-12-77

FILE NO. 824-14-101

TR 2854

DATE 5/2/77

BORING NO. 1

LOCATION: Per Pen

DEPTH, FEET	SYMBOL	CORE BLOWNS/FT	DESCRIPTION	UNIT DRY WT. LB/CU. FT.	MOISTURE PERCENT	SOIL TYPE	RELATIVE COMPACITION PERCENT	REMARKS AND ANALYSIS
0								
12	12		Dark brown silty fine grained sand	1- 101.9	7.9	A ₁	82	Upward dip Submarine
15	15		SILT LENS	3- 94.9	17.5	B ₁	82	
5	17		Dark brown - Silty fine grained Sand	5- 104.6	17.9	A ₁	84	Upward dip Submarine
10	21		Medium brown fine sandy clayey silt	10- 88.0	3.5.1	B ₁	76	Upward dip Submarine
			Sand Lense					
15			Silt			B ₁		No Free Water Bottom at 15'

TR 2854

DATE 5/2/77

BORING NO. 2

LOCATION: per plan

DEPTH, FEET	STICK	CORE DOWN / UP	DESCRIPTION	UNIT DAY WT LB/CU. FT	MOISTURE PERCENT	SOIL TYPE	RELATIVE CONDUCTION PERCENT	REMARKS AND ANALYSIS
0								
9	9		Dark brown silty fine grained sand	89.8	20.9	A ₁	72	the most dense band
10	10			96.5	15.5		77	
5			Silt lens					
20	20		Dark brown silty fine grained sand	102.3	20.8	A ₁	82	more sand than silt
10			Light brown silty fine to medium grained sand			A ₂		
15	15		Light brown fine sandy clayey silt	82.5	33.6	B ₁	71	soil unweathered thin pebbles
15								No free water Bottom at 15'

TR 2854

DATE 5/2/77

BORING NO. 3

LOCATION: per plan

DEPTH, FEET	STRENGTH CORE BLOWS / FT.	DESCRIPTION	STRENGTH CONNECTION BLOWS / FT.	UNIT DRY WT. LB/CU. FT.	MOISTURE PERCENT	SOIL TYPE	RELATIVE COMPATITION PERCENT	REMARKS AND ANALYSIS
0								
12	12	Dark brown silty fine grained sand	1 -	93.7	10.3	A ₁	75	
16	16		3 -	93.9	17.6		75	no upward slope
5	15	Light brown silty fine to medium grained sand	5 -	99.4	16.1	A ₂	82	no free water
10	10	Light brown fine sandy clayey silt	10 -	82.2	39.9	B ₁	71	no upward slope
15								No Free water Bottom AT 15'

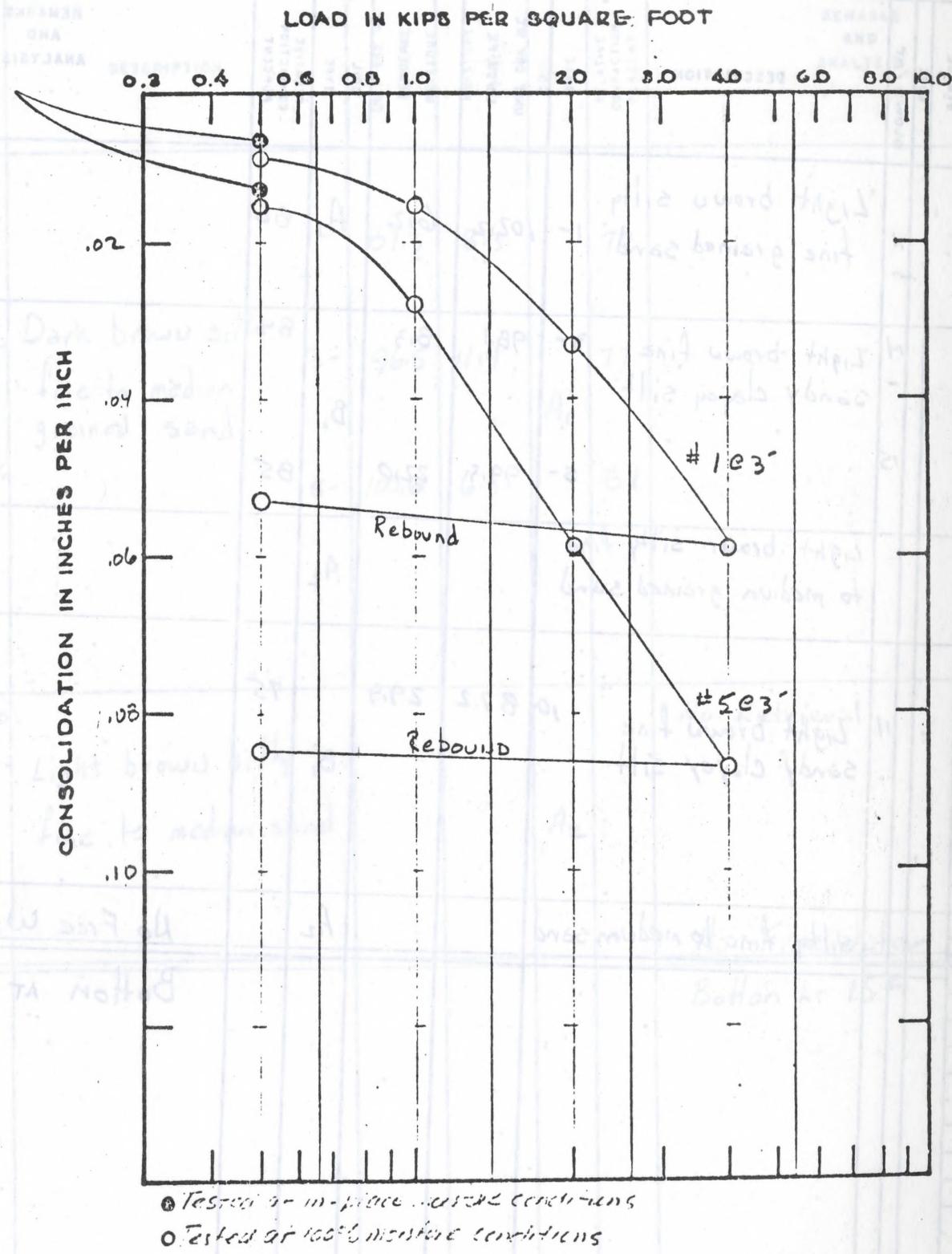
TR 2851

DATE 5-2-77

BORING NO. 4

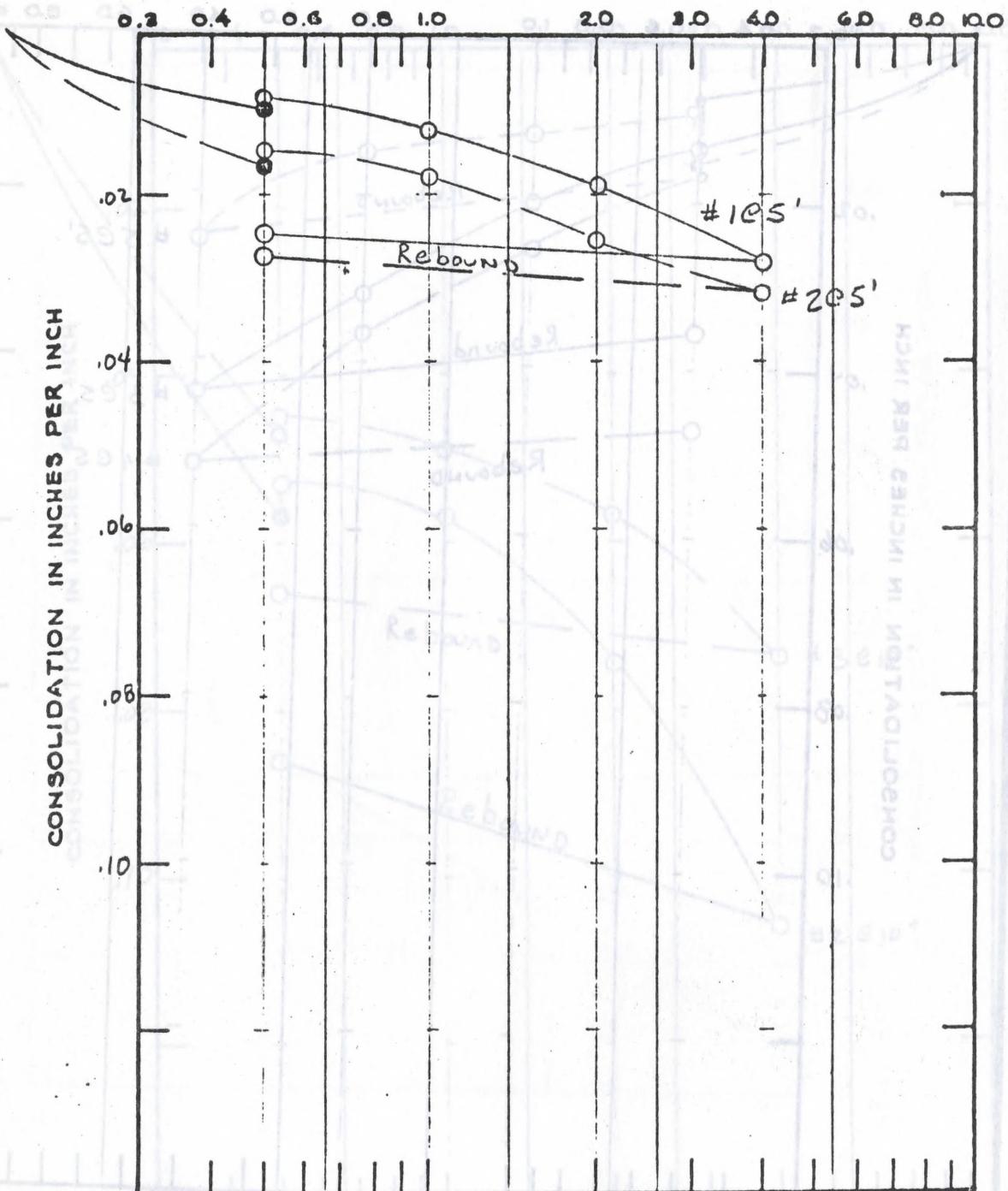
LOCATION: Per plan

DEPTH, FEET	ELEVATION, FEET	CORE NO.	DESCRIPTION	UNIT DRY WT. LB/CU. FT.	MOISTURE PERCENT	SOIL TYPE	RELATIVE COMPACTION PERCENT	REMARKS AND ANALYSIS
0								
13	50	1-	Dark brown silty fine to medium grained sand	87.3	8.3		70	Good top soil
3	52	3-		96.5	11.4		77	77
5	55	5-		100.6	6.3	A ₁	81	Good top soil
10	50		Light brown silty fine to medium sand					No Retrieval
15						A ₂		No Free Water Bottom at 15'


TR 2854

DATE 5/2/77

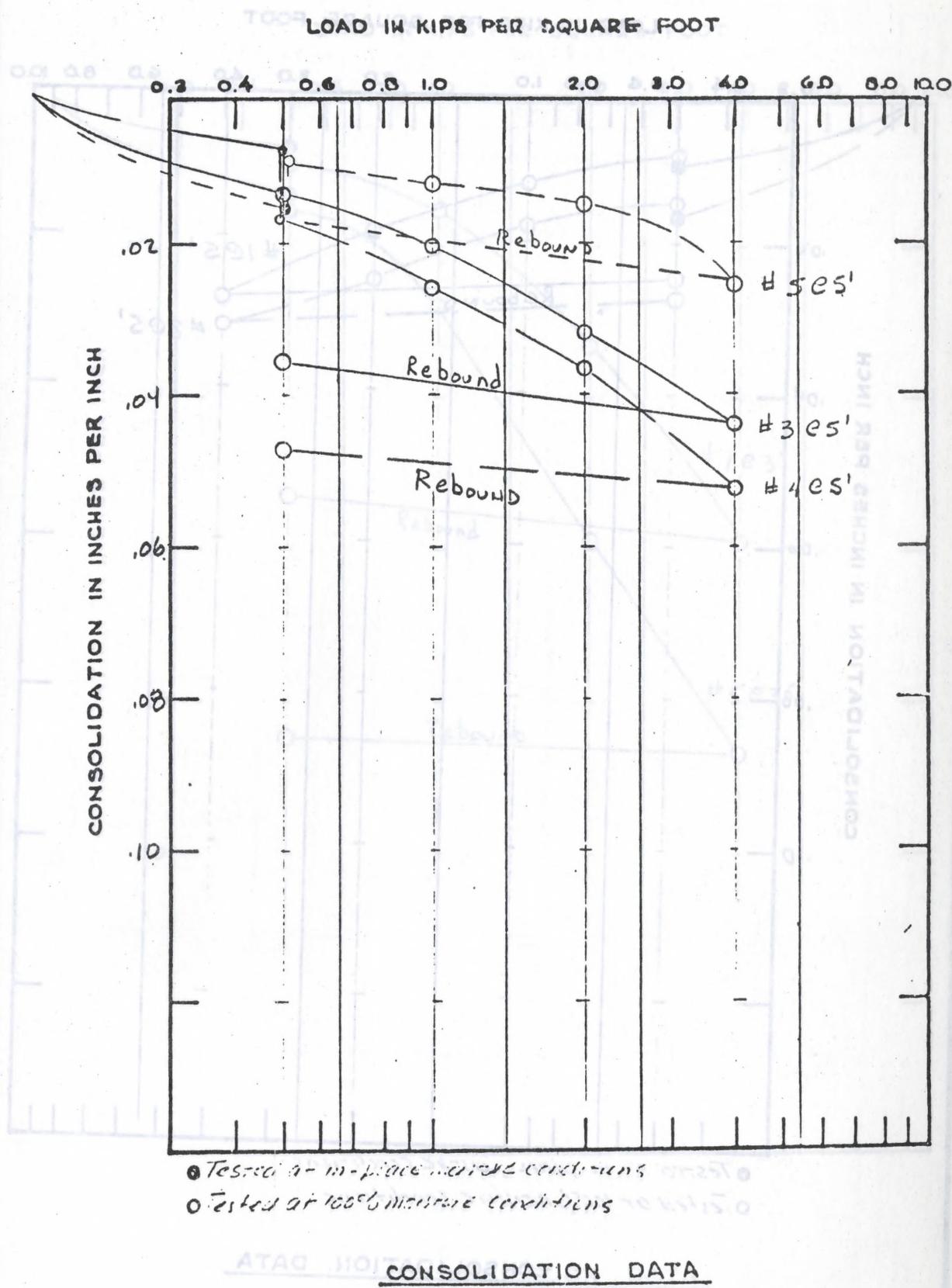
BORING NO. 5


LOCATION: per plan

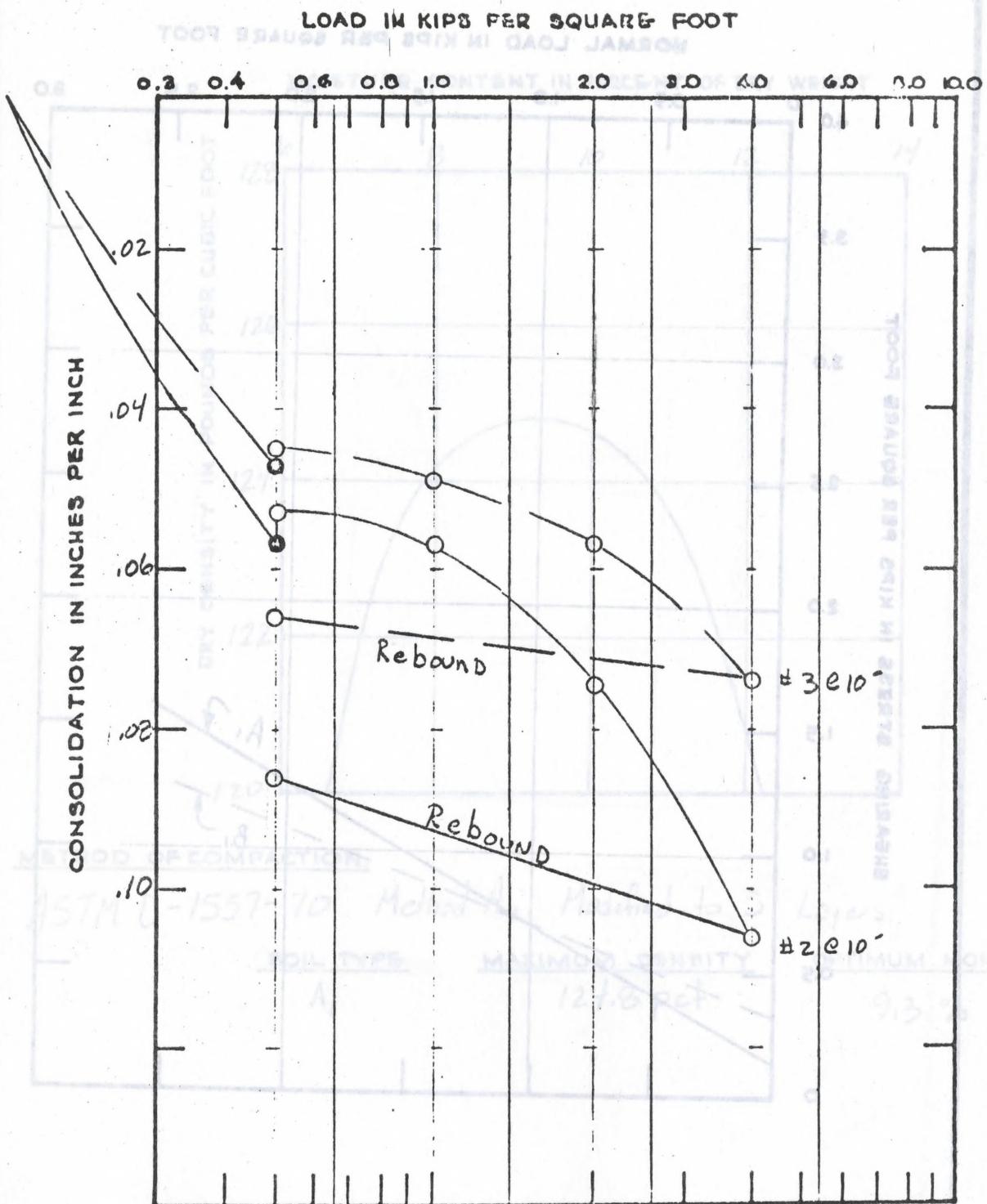
DEPTH, FEET	SYMBOL	CORE BLOWS / FT	DESCRIPTION	UNIT DRY WT. LB/CU. FT	MOISTURE PERCENT	SOIL TYPE	RELATIVE COMPACTION PERCENT	REMARKS AND ANALYSIS
0			Light brown silty fine grained sand	1- 102.2	6.2	A ₁	62	
11			Light brown fine sandy clayey silt	3- 98.1	8.3		84	
5						B ₁		
15			Light brown silty fine to medium grained sand	5- 99.5	22.0		85	
10			Light brown fine sandy clayey silt	10- 87.2	29.9		75	
15			silty fine to medium sand			A ₂		No Free Water
								Bottom at 15 ^o

CONSOLIDATION DATA

LOAD IN KIPS PER SQUARE FOOT

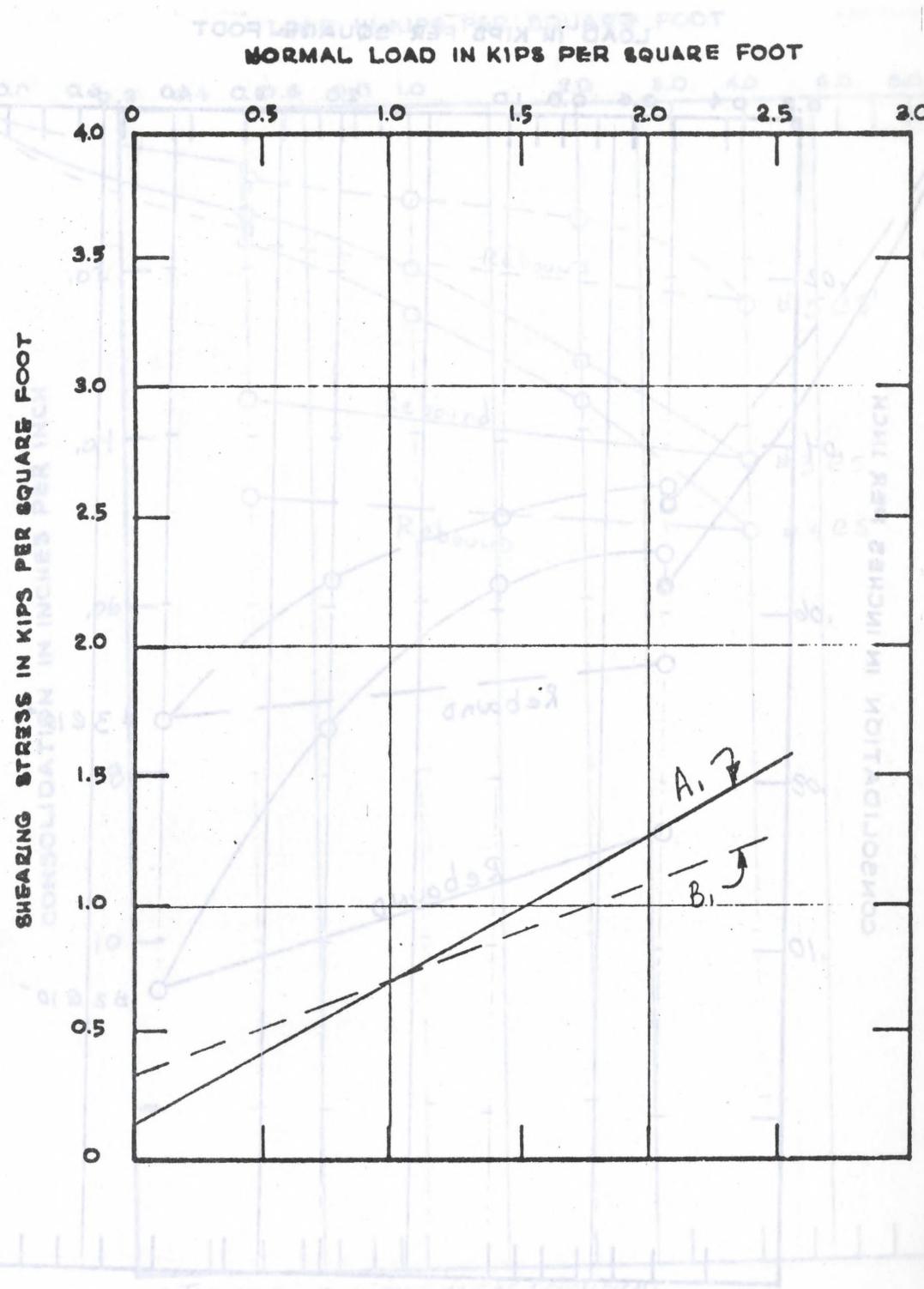


- Tested in in-place moisture conditions
- Tested at 100% moisture conditions


ATAD HOM DATA

CONSOLIDATION DATA

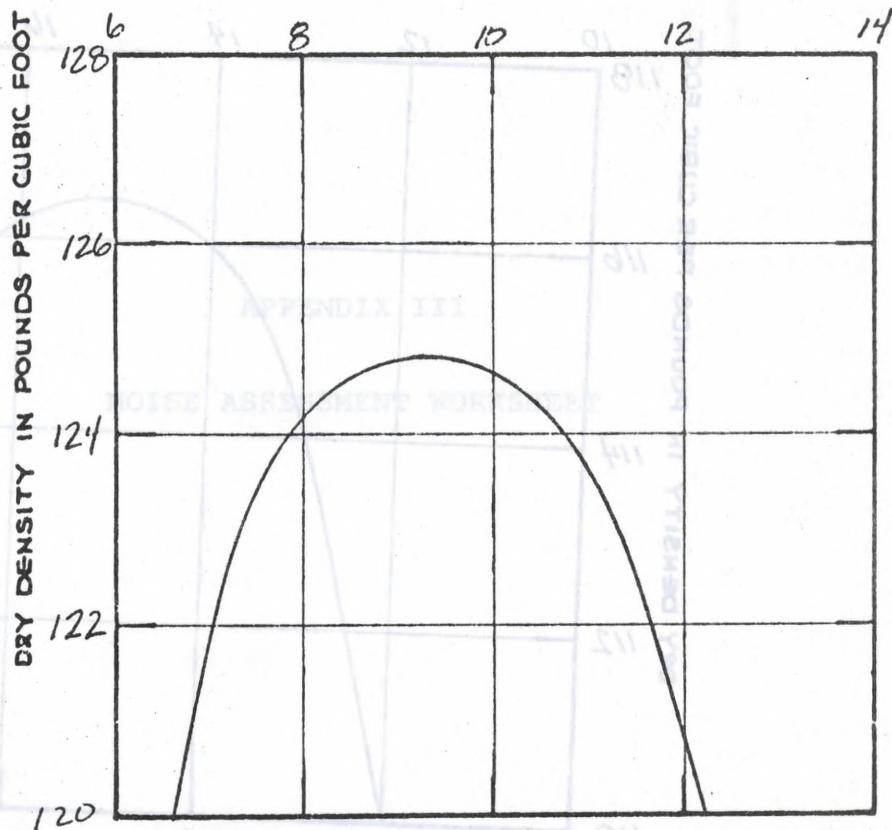
6610.B847RVD1
BUENA ENGINEERS INC.


661a: B8428 VOL
BUENA ENGINEERS INC.

● Tested in in-place moisture conditions

○ Tested at 100% moisture conditions

CONSOLIDATION DATA



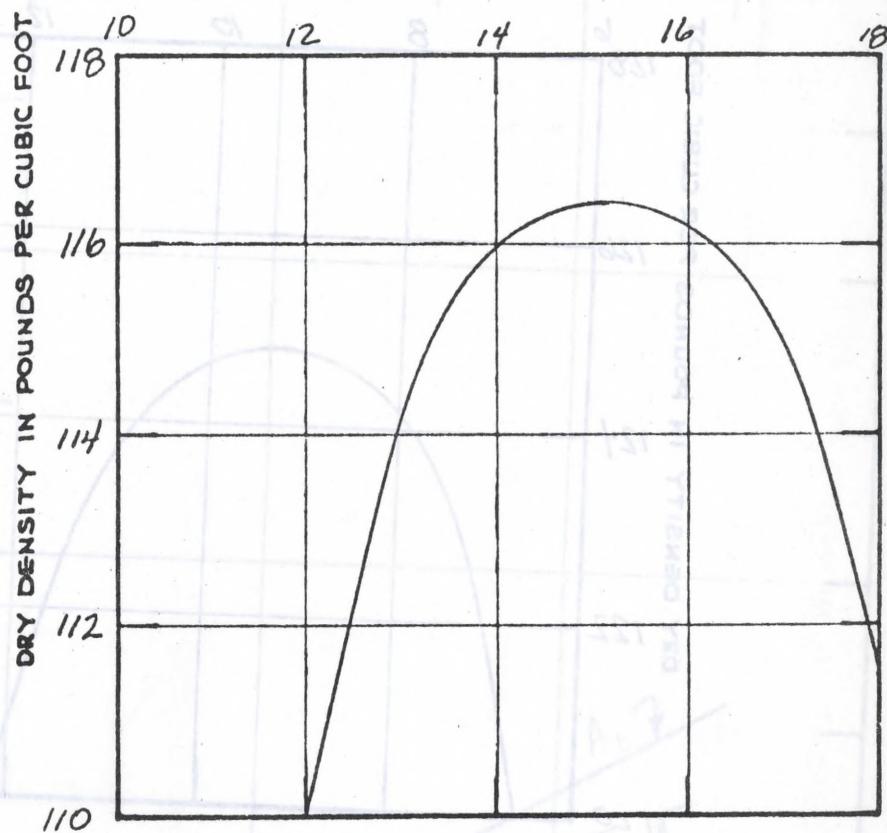
DIRECT SHEAR DATA

$$A_1 \quad \phi = 29.3^\circ \quad c = 143 \text{ psf}$$

$$B_1 \quad \phi = 20.7^\circ \quad c = 341 \text{ psf}$$

MOISTURE CONTENT IN PERCENT OF DRY WEIGHT

METHOD OF COMPACTION


ASTM D-1557-70 Method A, Modified to 3 Layers

<u>SOIL TYPE</u>	<u>MAXIMUM DENSITY</u>	<u>OPTIMUM MOISTURE</u>
A ₁	124.8 pcf	9.3 %

MAXIMUM DENSITY - OPTIMUM MOISTURE CURVES

NORMAL LOAD IN KIPS PER SQUARE FOOT

MOISTURE CONTENT IN PERCENT OF DRY WEIGHT

METHOD OF COMPACTION.

ASTM D-1557-70 Modified to 3 Layers

<u>SOIL TYPE</u>	<u>MAXIMUM DENSITY</u>	<u>OPTIMUM MOISTURE</u>
B ₁	116.4 pcf	13.1%

DIRECT SHEAR DATA

$$B_1 - \phi = 29.3^\circ \quad c = 193 \text{ psf}$$

$$B_2 - \phi = 30.7^\circ \quad c = 341 \text{ psf}$$

MAXIMUM DENSITY - OPTIMUM MOISTURE CURVES

APPENDIX III

NOISE ASSESSMENT WORKSHEET

Noise Assessment Guidelines

Worksheet C – Roadway Noise

List all major roads within 1000 ft of the site:

1. VINEYARD AVENUE
2. "C" STREET [END]
3. STATE HIGHWAY 1
4. GONZALES ROAD

Acceptability Category:	
Automobiles	Trucks
<u>CLEARLY ACCEPTABLE</u>	<u>MARGINAL</u>
<u>CLEARLY ACCEPTABLE</u>	<u>N/A</u>
<u>CLEARLY ACCEPTABLE</u>	<u>NORMALLY UNACCEPTABLE</u>
<u>CLEARLY ACCEPTABLE</u>	<u>N/A</u>

Necessary Information:

1. The distance in feet from the site to the centerline of
 - a. nearest lane:
 - b. farthest lane:
2. The total number of automobiles per hour in both directions:
3. The number of trucks per hour
 - a. uphill direction:
 - b. downhill direction:
 - c. both directions:
4. Effective distance from site to road:

Adjustments for Automobile Traffic

5. Stop-and-go: 1976
 6. Mean speed: 1995

Adjustments for Truck Traffic

7. Road gradient:
8. Stop-and-go:
9. Mean speed:

Barrier Adjustment

10. Distance from site to barrier:
11. Distance from center of road to barrier:
12. Effective elevation of road:
13. Effective elevation of site: 75.0
14. Effective elevation of barrier:
15. Difference in elevation between site and road:

(Over)

Noise Assessment Guidelines

Worksheet C – (Continued)

16. Difference in elevation between barrier and road:
17. Adjusted distance:

Road #1 Road #2 Road #3 Road #4

~~✓~~ ~~✓~~ ~~✓~~ ~~✓~~

16. Elevation difference between barrier and road:

Date: 5/6/77

Signature: R. Flock

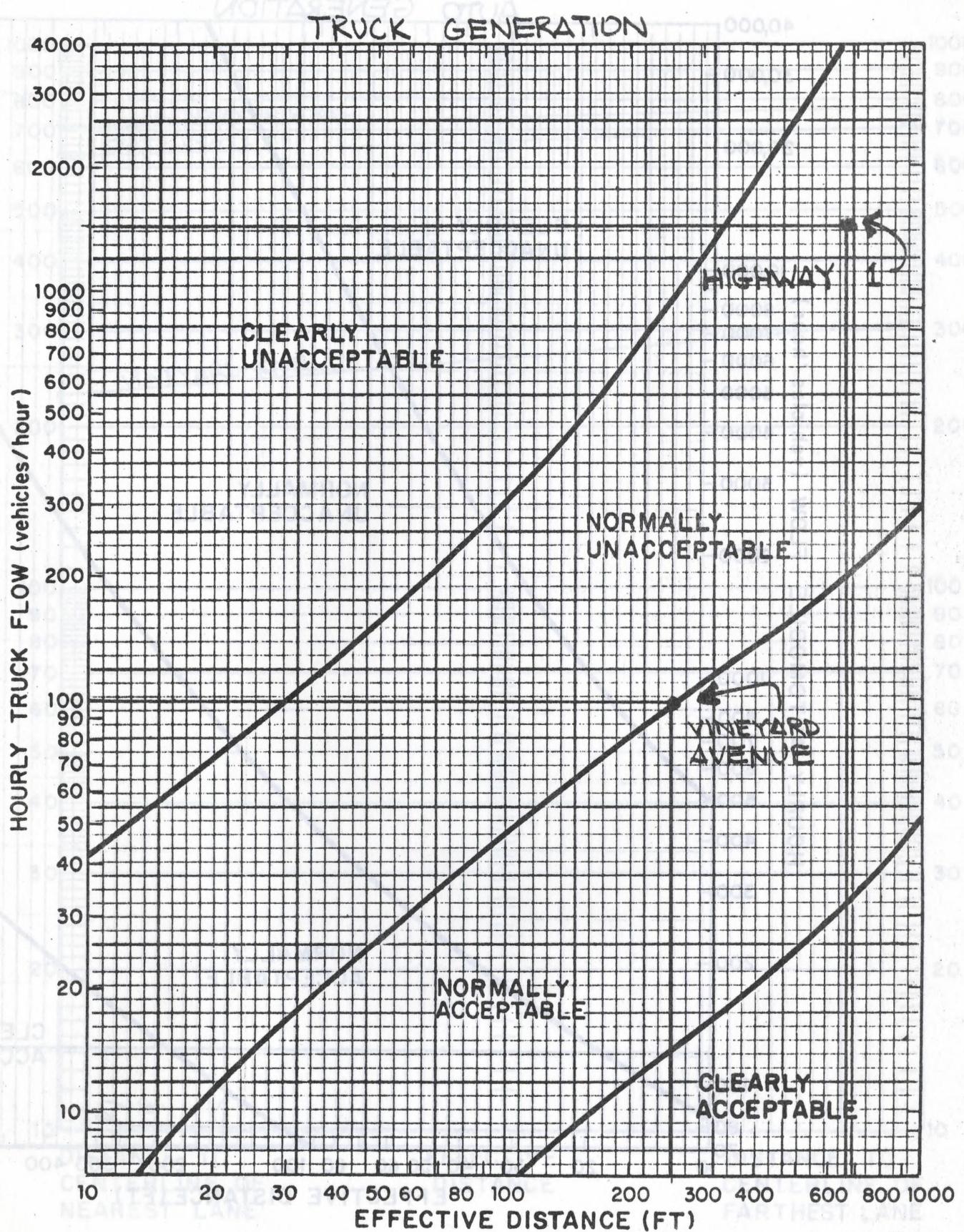


Figure 3.

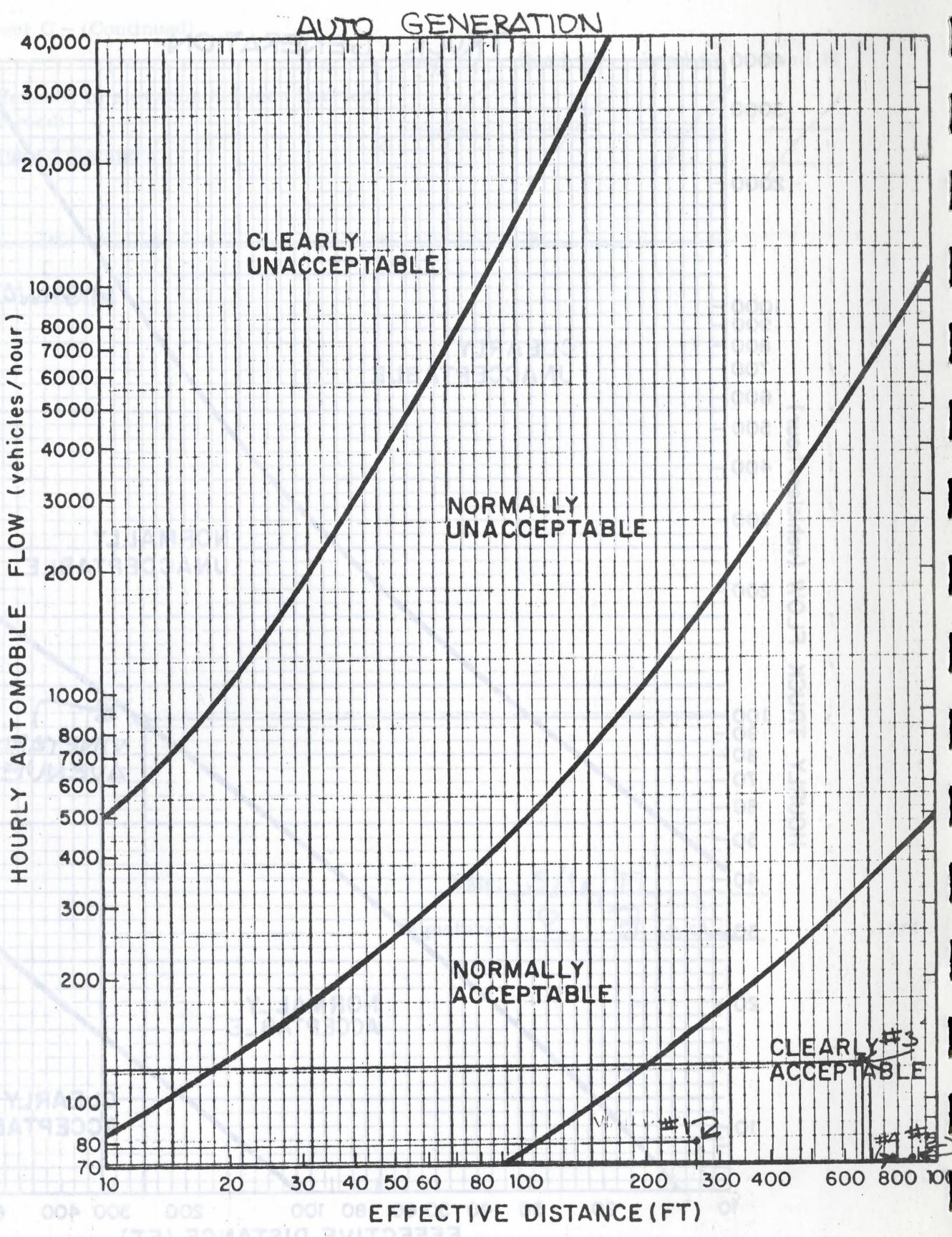


Figure 2.

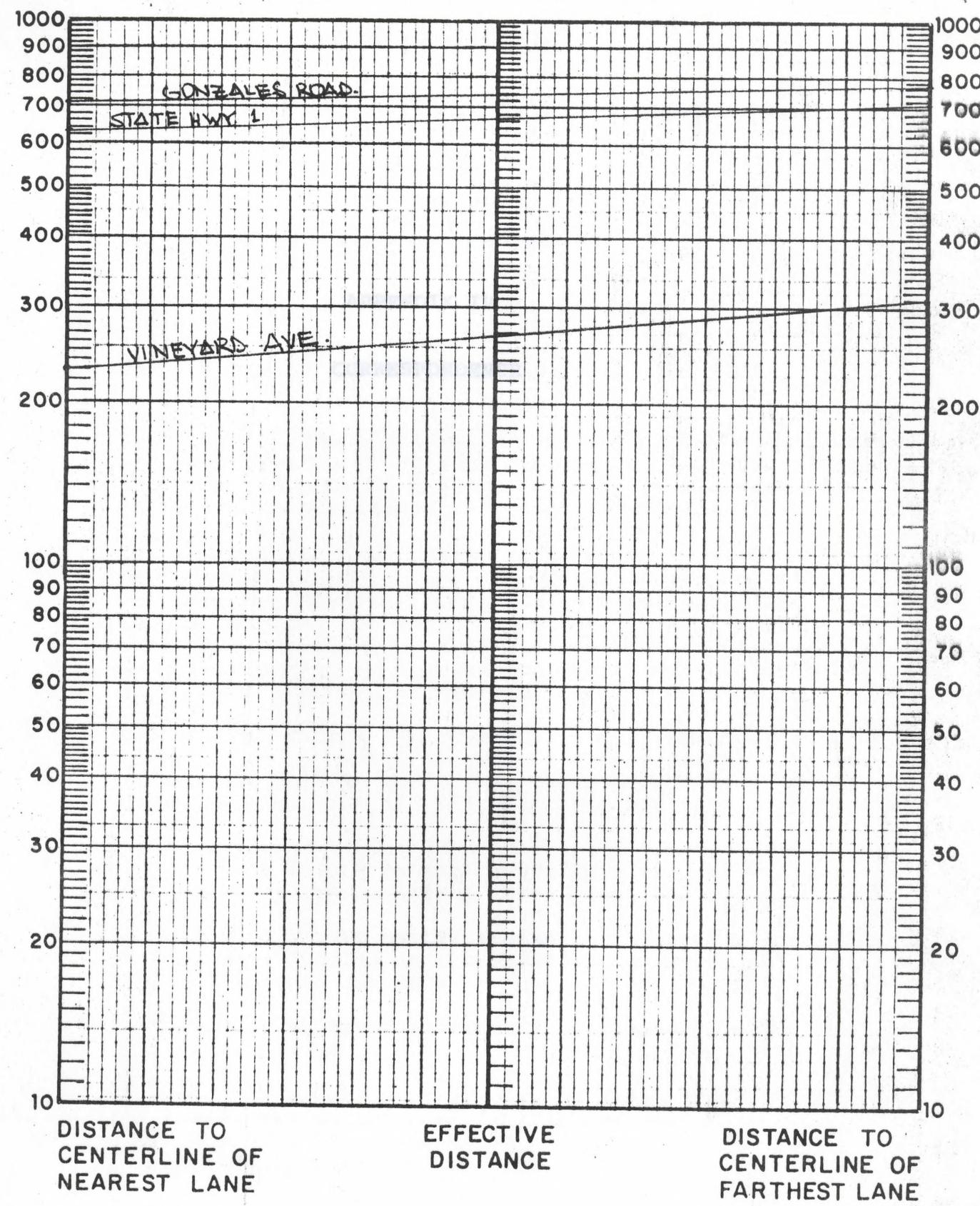


Figure 1.

CITY OF OXNARD
MEMORANDUM

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
444410
444411
444412
444413
444414
444415
444416
444417
444418
444419
444420
444421
444422
444423
444424
444425
444426
444427
444428
444429
444430
444431
444432
444433
444434
444435
444436
444437
444438
444439
444440
444441
444442
444443
444444
444445
444446
444447
444448
444449
4444410
4444411
4444412
4444413
4444414
4444415
4444416
4444417
4444418
4444419
4444420
4444421
4444422
4444423
4444424
4444425
4444426
4444427
4444428
4444429
4444430
4444431
4444432
4444433
4444434
4444435
4444436
4444437
4444438
4444439
4444440
4444441
4444442
4444443
4444444
4444445
4444446
4444447
4444448
4444449
44444410
44444411
44444412
44444413
44444414
44444415
44444416
44444417
44444418
44444419
44444420
44444421
44444422
44444423
44444424
44444425
44444426
44444427
44444428
44444429
44444430
44444431
44444432
44444433
44444434
44444435
44444436
44444437
44444438
44444439
44444440
44444441
44444442
44444443
44444444
44444445
44444446
44444447
44444448
44444449
444444410
444444411
444444412
444444413
444444414
444444415
444444416
444444417
444444418
444444419
444444420
444444421
444444422
444444423
444444424
444444425
444444426
444444427
444444428
444444429
444444430
444444431
444444432
444444433
444444434
444444435
444444436
444444437
444444438
444444439
444444440
444444441
444444442
444444443
444444444
444444445
444444446
444444447
444444448
444444449
4444444410
4444444411
4444444412
4444444413
4444444414
4444444415
4444444416
4444444417
4444444418
4444444419
4444444420
4444444421
4444444422
4444444423
4444444424
4444444425
4444444426
4444444427
4444444428
4444444429
4444444430
4444444431
4444444432
4444444433
4444444434
4444444435
4444444436
4444444437
4444444438
4444444439
4444444440
4444444441
4444444442
4444444443
4444444444
4444444445
4444444446
4444444447
4444444448
4444444449
44444444410
44444444411
44444444412
44444444413
44444444414
44444444415
44444444416
44444444417
44444444418
44444444419
44444444420
44444444421
44444444422
44444444423
44444444424
44444444425
44444444426
44444444427
44444444428
44444444429
44444444430
44444444431
44444444432
44444444433
44444444434
44444444435
44444444436
44444444437
44444444438
44444444439
44444444440
44444444441
44444444442
44444444443
44444444444
44444444445
44444444446
44444444447
44444444448
44444444449
444444444410
444444444411
444444444412
444444444413
444444444414
444444444415
444444444416
444444444417
444444444418
444444444419
444444444420
444444444421
444444444422
444444444423
444444444424
444444444425
444444444426
444444444427
444444444428
444444444429
444444444430
444444444431
444444444432
444444444433
444444444434
444444444435
444444444436
444444444437
444444444438
444444444439
444444444440
444444444441
444444444442
444444444443
444444444444
444444444445
444444444446
444444444447
444444444448
444444444449
4444444444410
4444444444411
4444444444412
4444444444413
4444444444414
4444444444415
4444444444416
4444444444417
4444444444418
4444444444419
4444444444420
4444444444421
4444444444422
4444444444423
4444444444424
4444444444425
4444444444426
4444444444427
4444444444428
4444444444429
4444444444430
4444444444431
4444444444432
4444444444433
4444444444434
4444444444435
4444444444436
4444444444437
4444444444438
4444444444439
4444444444440
4444444444441
4444444444442
4444444444443
4444444444444
4444444444445
4444444444446
4444444444447
4444444444448
4444444444449
44444444444410
44444444444411
44444444444412
44444444444413
44444444444414
44444444444415
44444444444416
44444444444417
44444444444418
44444444444419
44444444444420
44444444444421
44444444444422
44444444444423
44444444444424
44444444444425
44444444444426
44444444444427
44444444444428
44444444444429
44444444444430
44444444444431
44444444444432
44444444444433
44444444444434
44444444444435
44444444444436
44444444444437
44444444444438
44444444444439
44444444444440
44444444444441
44444444444442
44444444444443
44444444444444
44444444444445
44444444444446
44444444444447
44444444444448
44444444444449
444444444444410
444444444444411
444444444444412
444444444444413
444444444444414
444444444444415
444444444444416
444444444444417
444444444444418
444444444444419
444444444444420
444444444444421
444444444444422
444444444444423
444444444444424
444444444444425
444444444444426
444444444444427
444444444444428
444444444444429
444444444444430
444444444444431
444444444444432
444444444444433
444444444444434
444444444444435
444444444444436
444444444444437
444444444444438
444444444444439
444444444444440
4

VI. *Adagio*

Adagio assai

CITY OF OXNARD

MEMORANDUM

MAY 9, 1977

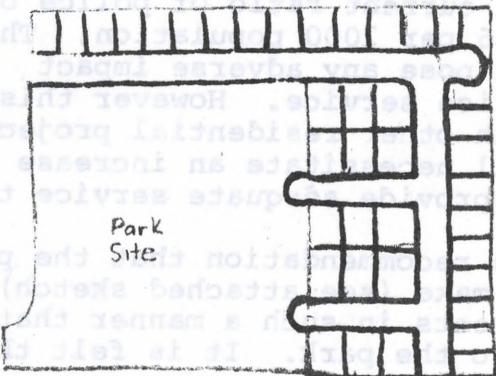
To: RICHARD FLOCH, PLANNING DEPARTMENT

From: OFFICER DARRELL ULMER, POLICE DEPARTMENT

SUBJECT: EIR FOR TENTATIVE TRACT 2854 (STANDARD PACIFIC)

The City of Oxnard currently employs 104 sworn full time police officers, 81 of whom respond to calls for service from the citizens of the community while the remainder serve in administrative and other capacities.

The current ratio of police officers to population is 1.16 per 1000 population. The proposed project will not pose any adverse impact in terms of providing police service. However this project in conjunction with other residential projects in the city of Oxnard will necessitate an increase in the number of officers to provide adequate service to the city as a whole.


One recommendation that the police department would like to make (see attached sketch) is the relocation of the streets in such a manner that they would bulb slightly into the park. It is felt that this has many advantages.

1. It allows patrolling officers to approach and observe the park from three sides instead of two.
2. It allows better access to the park for emergency vehicles in the event there was an injured subject in the park.
3. It allows residents in the project better access to the park.
4. It offers more privacy to residences located adjacent to the park in that you will have (5) homes with side yards instead of (10) with rear yards adjacent to the park.

Darrell D. Ulmer
Darrell D. Ulmer
Oxnard Police Dept.

OFFICER DARRYL DUMER POLICE DEPARTMENT

TENTATIVE TRACT 2854 N

Site 1000' N. of Park Site

CITY OF OXNARD

MEMORANDUM

4 May 1977

To: Mr. Richard Floch, Planning Assistant

From: H. A. Gustafson, Fire Chief

SUBJECT: EIR For Tentative Tract 2854 (Standard Pacific)

1. Question: Estimated response time and location of primary responding station.
Answer: The response time should be less than three minutes for the two pumper located on Vineyard Avenue near the Highway 1 intersection.
2. Question: Plans for new facilities which are pertinent to the project.
Answer: No additional Fire Department facilities are planned for this area.
3. Question: Location of the hydrants and amount and adequacy of the fire flow which will serve the project.
Answer: The development will be required to install fire hydrants and mains in accordance with the City standards as promulgated by City Water Department.
4. No other comments seem appropriate at this time.

H. A. Gustafson, Fire Chief

by R. Furr
R. Furr, Assistant Chief

ggm

CITY OF OXNARD
RIO SCHOOL
DISTRICT

305 W. THIRD ST., OXNARD, CALIF. 93030
TELEPHONE 448-2111, FAX 448-2111

May 4, 1977

Mr. Richard Floch
Planning Assistant
City of Oxnard
305 West 3rd St.
Oxnard, CA 93030

Re: Tract 2854


Dear Mr. Floch:

The El Rio School, 2714 Vineyard Ave., will serve the pupils in Grades K-6. The capacity of this school is 570. The present enrollment is 372.

The Rio del Valle School will serve the pupils in Grades 7-8. The capacity of this school is 550 with a current enrollment of 450.

At this time there are not any plans for adding to any facilities or changing from the current normal school year.

Sincerely,

CHARLES K. TURK
Assistant Superintendent

CKT/jw

PLANNING DEPARTMENT
305 W. THIRD STREET
OXNARD, CALIFORNIA 93030

APPENDIX V

SEWER MORATORIUM ORDINANCE

ORDINANCE NO. 1655

AN ORDINANCE OF THE CITY COUNCIL OF THE
CITY OF OXNARD REVISING AND CLARIFYING
THE TEMPORARY MORATORIUM ON SEWER
CONNECTIONS.

WHEREAS, in Ordinance No. 1652, adopted as an emergency measure on June 21, 1977, the City imposed a moratorium on new sewer connections to the Ventura Road Trunk Sewer until relief was provided for the overloaded system; and

WHEREAS, based upon information available at the time the City Council provided various exceptions to such moratorium which have since been found to be in need of revision and clarification in order to carry out the purposes of the moratorium and make its application more equitable to persons affected thereby.

NOW, THEREFORE, THE CITY COUNCIL OF THE CITY OF OXNARD DOES HEREBY ORDAIN AS FOLLOWS:

PART 1. Ordinance No. 1652 is hereby repealed.

PART 2. The temporary moratorium on new sewer connections to the Ventura Road Trunk Sewer, first imposed by Ordinance No. 1652, is hereby continued upon the following terms and conditions:

1. AREAS. There are three areas served by the Ventura Road Trunk Sewer which require different treatment because of differing timetables for sewer construction. These areas are shown on a map attached hereto as Exhibit A and are referred to herein as follows:

a. Blue Area: That area for which the Ventura/Hueneme Road Relief Sewer will provide relief. This sewer is under construction and scheduled to be completed by September 1, 1977.

b. Yellow Area: That area for which Stage 1 of the Western Trunk Sewer and reconstruction of portions of the Ventura Road sewer will provide relief. Such relief is expected to be provided in approximately one year.

c. Red Area: That area for which relief has not yet been designed.

2. MORATORIUM. New sewer connections to the Ventura Road Trunk Sewer and its tributaries, including those sewer lines which feed into it and into which it feeds and their tributaries, more particularly described on the map attached hereto as Exhibit A are prohibited except as follows:

a. Blue Area.

1. Developments having valid building permits issued on or before July 20, 1977 will be given occupancy permits and allowed to connect to the sewer.

2. All other developments may be processed and may be constructed but will not be given occupancy permits and allowed to connect to the sewer until the Ventura/Hueneme Road relief sewer is completed.

b. Yellow Area.

1. Developments having valid building permits issued on or before July 20, 1977 will be given occupancy permits and allowed to connect to the sewer.

2. All other developments may be processed and may be constructed but will not be given occupancy permits and allowed to connect to the sewer until Stage 1 of the Western Trunk Sewer and reconstruction of portions of the Ventura Road Sewer have provided relief to the area, or the provisions of paragraphs (b) or (c) under Section 1 of the Red Area can be satisfied.

c. Red Area.

1. Developments under construction pursuant to valid building permits will be given occupancy permits and allowed to connect to the sewer only if:

(a) The Ventura Road Trunk Sewer or its tributaries is no longer substantially overloaded and can accept limited additional flows from such developments; or

(b) Other adequate public sewer facilities have been provided and are available; or

(c) Adequate alternative disposal facilities acceptable to all agencies having jurisdiction are available.

2. All other developments may be processed if the developer so requests, but no building permit will be issued until the circumstances in (a), (b), or (c) of the above paragraph 1 exist.

d. Construction Not Generating Sewage.

Construction which will not result in the generation of substantial additional sewage will be given occupancy permits and allowed to connect to the sewer.

3. ADDITIONAL RESTRICTIONS. All approvals given by the City for development or occupancy in any area shall be subject to such additional restrictions as may be imposed by the Regional Water Quality Control Board.

PART 3. Within 15 days after adoption, the City Clerk shall cause this ordinance to be published one time in a newspaper of general circulation within the City of Oxnard. Ordinance No. 1655 was read and adopted on July 26, 1977 as an emergency measure to take effect immediately to protect the public health, safety, and welfare. This moratorium on sewer connections is necessary to avert a serious public health problem which will occur unless sewer connections are suspended or restricted until additional sewer line capacity is provided.

AYES: Councilmen Maxwell, Miller, Takasugi, Tolmach.

NOES: None.

ABSENT: Councilman Kato.

ATTEST:

Mildred W. Foster, CMC
City Clerk

Robert Blinn Maxwell
Mayor Pro Tem

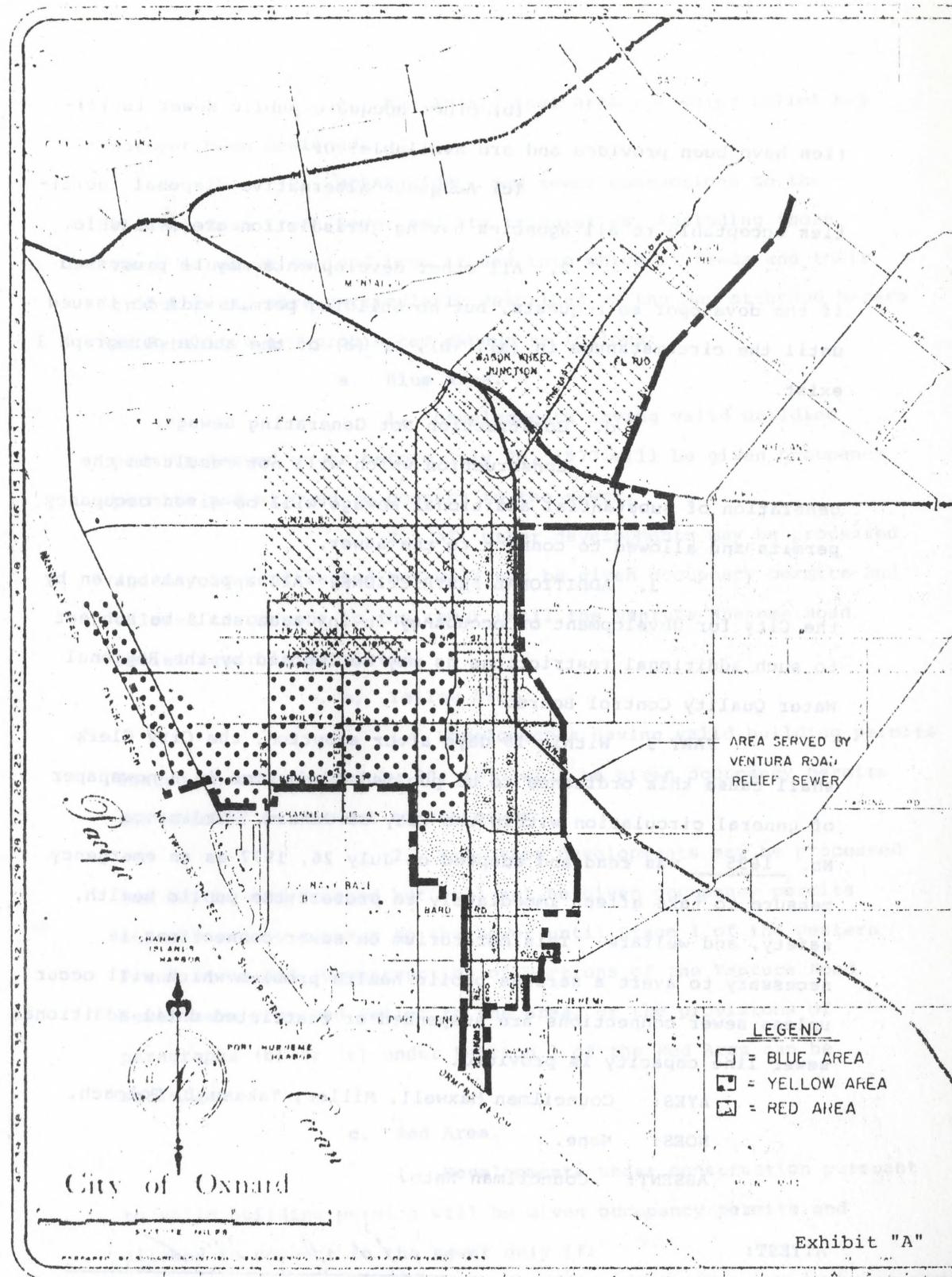


Exhibit "A"

