

RICHARD J. MAGGIO
Community Development Director

June 22, 1999

Mr. Rodney L. Murphy, CAE
Director of Airports
555 Airport Way
Camarillo, CA 93010

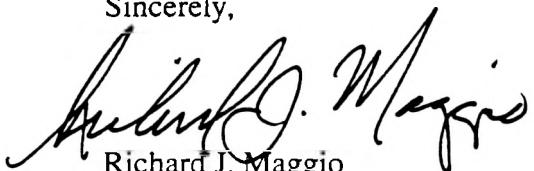
Subject: Comments on Inadequacy of *Final Environmental Assessment/Environmental Impact Report (EA/EIR) for Land Acquisition and Airport Development at Oxnard Airport*

Rod
Dear Mr. Murphy:

As you are aware, the Board of Supervisors approved *Option Two* concerning your request on the Board's June 8, Agenda to certify the *EA/EIR* and approve the *Revised Draft Master Plan* for Oxnard Airport. The first part of *Option Two* "direct[ed] staff to re-open the public review period on the *Administrative Final Environmental Impact Report* for an additional 45 days...." The purpose of this letter is to provide significant new information that recently became available, request that this information be thoroughly evaluated and included in the *EA/EIR*, and that this document or affected parts be recirculated for public review and comment for at least 45 days before it is reconsidered by the County's Environmental Report Review Committee and the Board of Supervisors. As you may recall, recirculation is required when significant new information showing that a new significant environmental impact would result from the project is added to an EIR after public notice is given of the availability of the EIR. The new information should be considered as additive to other information concerning the inadequacy of the *EA/EIR* sent to you in a letter dated December 28, 1998.

In *Table 4B* of the *EA/EIR* (p. 4-6), five different aircraft are identified as part of the commuter fleet. It was recently learned that several of these aircraft can carry very high fuel loads. As an example, the Canadair Regional Jet (Series 200-LR) can carry up to 14,305 pounds or 2,135 gallons of fuel. After learning of this, the *EA/EIR* was reviewed again to determine if there was any information or impact analysis pertaining to potential increase in

Mr. Rodney L. Murphy
June 22, 1999
Page 2


risk associated with increasing the number of aircraft with high fuel loads. There is no information in the EIR on this subject. Most of these aircraft would be making their final approach to Runway 25 over the center of the City and this area includes public meeting places, an elementary school, and an existing residential neighborhood. After reviewing the EA/EIR, no information was found pertaining to this type of safety issue and, therefore, it is requested that a safety (risk/hazard) study be prepared and included in the document for subsequent recirculation and public review, as follows:

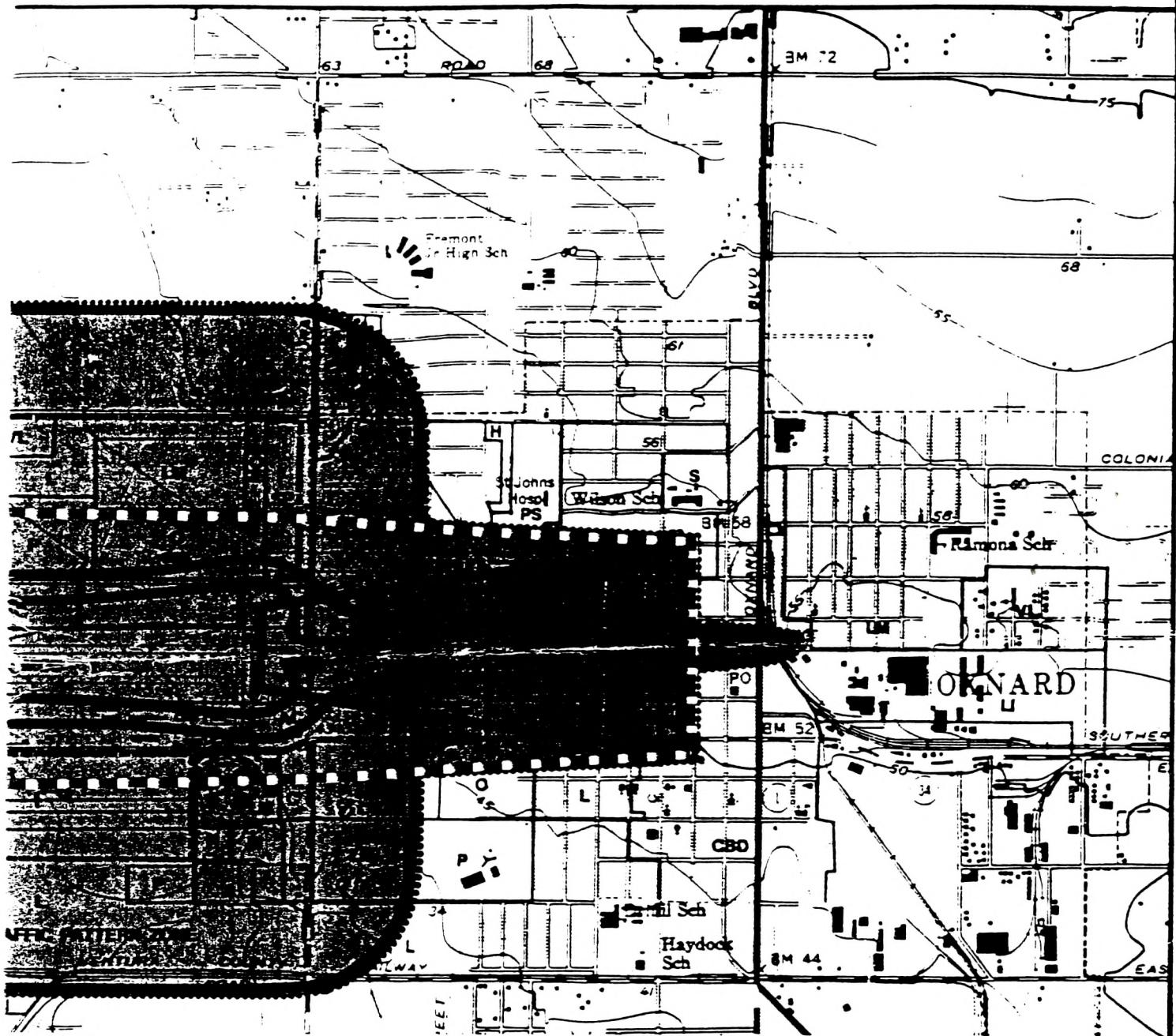
1. Assume that an airplane on final approach to Runway 25 crashes within the *Airport Safety Zone*, as identified in *Figure 1-5* of the *Adopted Ventura County Oxnard Airport Land Use Plan*, and at a point midway between "B" Street and Ventura Road.
2. Assume that each aircraft identified in Table 4B would leave from LAX with almost a full fuel load and would fly direct to Oxnard Airport.
3. Assume the numbers of operations identified for the years 2003 and 2018 in *Table 4B* of the *Airport Master Plan EIR*.
4. Assume a maximum number of persons on the ground and building occupancy at the location identified in number 1, above.
5. Assume a typical dispersion of aircraft debris and fuel from the point of impact with a no-wind condition and, subsequently with the prevailing westerly wind.
6. Assume that domestic gas service lines will be ruptured and that several vehicles with their typical fuel loads will be involved.
7. Identify the initial path of physical damage, initial spread of fuel and fire assuming that all tanks are ruptured, and the expanded area of secondary fire that could be involved.
8. Based upon the assumptions identified above, estimate the possible number of injuries and fatalities involving persons on the ground—also, estimate the cost of property damage and impacts on the City's emergency services (i.e., fire, police, and medical).
9. Identify high occupancy buildings along the final approach path to Runway 25 (i.e., Public Library, City Hall, and Santa Clara Elementary School) in both the *EIR* text and exhibits.

Mr. Rodney L. Murphy
June 22, 1999
Page 3

In conclusion, it is recommended that the *Final EA/EIR* be revised to include the studies recommended above to help meet the intent of the *California Quality Act* and that it be recirculated for public review and comment.

Sincerely,

A handwritten signature in black ink, appearing to read "Richard J. Maggio".


Richard J. Maggio
Community Development Director

cc: Edmund F. Sotelo, City Manager
Gary Gillig, City Attorney
Joe Milligan, Fire Chief
Tony Berg, Director, Resource Management Agency
Keith Turner, Ventura County Planning Director
Tony Boden, Director of Planning and Community Development, Camarillo
Members, Oxnard Airport Authority

Enc: *Figure 1-5, Oxnard Airport Comprehensive Land Use Plan*
Table 4B, Fleet Mix Data
Canadair Regional Jet Specifications

139f8.3

PLAN • FOR • VENTURA COUNTY

INDUSTRIAL
 LI Limited Industrial
 B&R Business & Research

OPEN SPACE
 MOS Miscellaneous Open Space
 P Parks
 AG Agriculture
 B Buffer
 RPOS Resource Protection Open Space
 PR Planning Reserve

OTHER
 S Schools
 AC Airport Compatible
 PS Public/Semi-Public

zed
cial

ience

ss District

ice are shown with the City's
Hon for these properties is "Agriculture".
on.

Technologies

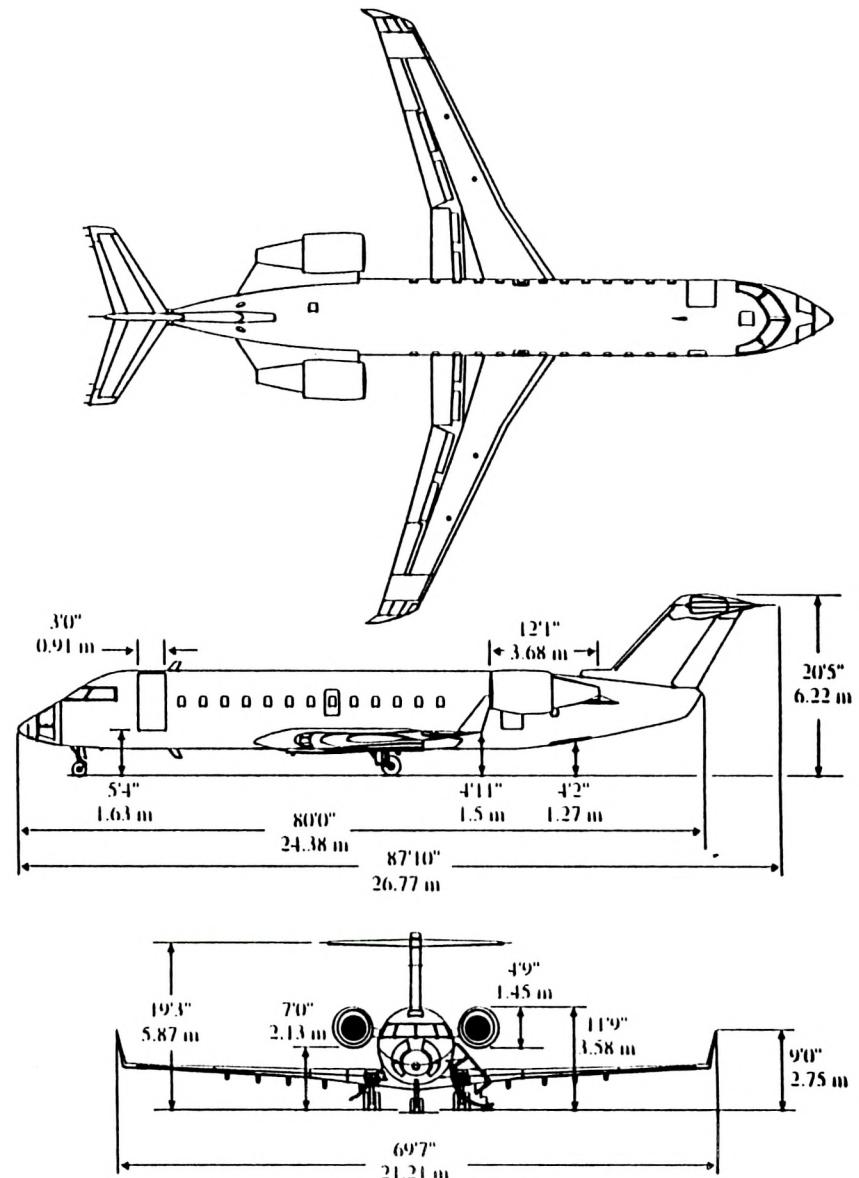
own & Country, Ste. 300
CA 92668

FIGURE 1-5
 OXNARD AIRPORT
 COMPREHENSIVE LAND USE PLAN

TABLE 4B
Fleet Mix Data

	1997	2003	2018
Itinerant Operations			
Commuter			
Beech 1900	7,300	7,950	4,470
SF 340	0	1,325	2,980
Dash 8	0	1,325	2,980
ATR-72	0	0	1,490
Canadair Regional Jet	0	0	2,980
Air Taxi			
Beech Super King Air	1,100	1,900	4,225
Twin Engine Turboprop	1,660	3,180	5,915
Twin Engine	6,085	5,080	3,380
Bell 206 Helicopter	1,100	1,270	1,690
Bell 222 Helicopter	1,100	1,270	1,690
General Aviation			
LEAR-25	126	210	0
Gulfstream III	30	60	0
LEAR-35	108	180	720
Citation 500 Series	68	110	515
Falcon 50	50	80	305
Westwind	68	110	515
Beech Super King Air	25	100	500
Convair	25	100	500
Twin Engine Turboprop	1,842	2,390	3,915
Twin Engine	5,530	6,775	9,790
Light Single-Variable Pitch Propeller	14,000	14,745	17,130
Light Single-Fixed Pitch Propeller	15,200	15,940	18,110
Bell 206 Helicopter	12,000	14,400	21,000
Bell 222 Helicopter	1,600	1,920	2,800
Robinson 22	2,400	2,880	4,200
Military			
Beech King Air	965	950	950
UH-1	950	950	950
Subtotal Itinerant	73,332	85,200	113,700
Local Operations			
General Aviation			
Twin Turboprop	2,290	3,600	6,400
Light Twin	6,860	10,200	16,000
Light Single-Variable Pitch Propeller	17,400	22,200	28,000
Light Single-Fixed Pitch Propeller	19,224	24,000	29,600
Military			
Beech King Air	150	150	150
UH-1	150	150	150
Subtotal Local	46,074	60,300	80,300
Total	119,406	145,500	194,000

WEIGHTS**Series 200**


Maximum take off	47,450 lb	21,523 kg
Maximum landing	44,700 lb	20,276 kg
Maximum zero fuel weight	42,200 lb	19,142 kg
Operating empty weight	30,270 lb	13,730 kg
Maximum fuel (6.7 lb/USG)	9,380 lb	4,255 kg
Maximum payload	11,930 lb	5,411 kg
Design payload (50 Pax)	10,000 lb	4,536 kg

Series 200ER

Maximum take off	51,000 lb	23,133 kg
Maximum landing	47,000 lb	21,319 kg
Maximum zero fuel weight	44,000 lb	19,958 kg
Operating empty weight	30,292 lb	13,740 kg
Maximum fuel (6.7 lb/USG)	14,305 lb	6,488 kg
Maximum payload	13,708 lb	6,218 kg
Design payload (50 Pax)	10,000 lb	4,536 kg

Series 200LR

Maximum take off	53,000 lb	24,040 kg
Maximum landing	47,000 lb	21,319 kg
Maximum zero fuel weight	44,000 lb	19,958 kg
Operating empty weight	30,292 lb	13,740 kg
Maximum fuel (6.7 lb/USG)	14,305 lb	6,488 kg
Maximum payload	13,708 lb	6,218 kg
Design payload (50 Pax)	10,000 lb	4,536 kg

Note: Information, technical data and performance figures in this fact sheet are based on engineering data and are subject to change without prior notice. This fact sheet does not intend to convey any guarantees or warranties. Any guarantees or warranties on any subject are extended to customers only as may be provided in their purchase agreements.